Protocols and Associated Types in Swift

Slava Pestov

Apple

2023

- Safe, expressive, systems language
- Open source: swift.org
- Apple, Linux, Windows
- \bullet C/Objective-C/C++ interop
- Separately-compiled generic code

- Safe, expressive, systems language
- Open source: swift.org
- Apple, Linux, Windows
- \bullet C/Objective-C/C++ interop
- Separately-compiled generic code
 - Runtime model
 - Type checking

- Safe, expressive, systems language
- Open source: swift.org
- Apple, Linux, Windows
- C/Objective-C/C++ interop
- Separately-compiled generic code
 - Runtime model
 - Type checking
 - Informal examples
 - Formal model
 - String rewriting

```
func identity(x: Int) -> Int {
  return x
}
```

```
func identity(x: String) -> String {
  return x
```

}

func identity<T>(x: T) -> T { return x }

```
struct PairOfInts {
   var first: Int
   var second: Int
}
```

```
enum IntOrPairOfInts {
   case first(Int)
   case second(PairOfInts)
}
```

```
struct Pair<T> {
   var first: T
   var second: T
}
```

```
enum Either<U, V> {
   case first(U)
   case second(V)
}
```

```
protocol StreamOfInts {
    mutating func next() -> Int
}
```

```
protocol Stream {
   associatedtype Element
   mutating func next() -> Self.Element
}
```

```
struct NaturalNumbers: Stream {
  var n = 0
  mutating func next() -> Int {
    n += 1
    return n
  }
}
```

<S> ... where S: Stream

```
func firstTwo<S>(_ s: inout S) -> Pair<S.Element>
    where S: Stream {
    return Pair(first: s.next(), second: s.next())
}
```

S.Element

```
protocol Equatable {
  static func ==(lhs: Self, rhs: Self)
}
func firstTwoEqual<S1, S2>(_ s1: inout S1,
                            _ s2: inout S2) -> Bool
    where S1: Stream,
          S2: Stream,
          S1.Element: Equatable,
          S1.Element == S2.Element {
  return s1.next() == s2.next()
}
```

S1.Element == S2.Element

A generic signature G is a list of root type parameters and requirements.

Requirements

- \bullet Conformance: $[T\colon P]$ for protocol P
- Same-type: [T == U]

(T and U are type parameters)

Type parameters

Recursively:

• Root: τ_i for $0 \le i < n$

• Member: U.A for type parameter U and associated type name A

```
protocol Collection {
   associatedtype Element
```

```
var count: Int { get }
subscript(index: Int) -> Self.Element
```

```
protocol Collection {
   associatedtype Element
   associatedtype Slice
```

```
var count: Int { get }
subscript(index: Int) -> Self.Element
subscript(range: Range<Int>) -> Self.Slice
```

}

```
protocol Collection {
   associatedtype Element
   associatedtype Slice
   where Self.Slice: Collection
```

```
var count: Int { get }
subscript(index: Int) -> Self.Element
subscript(range: Range<Int>) -> Self.Slice
```

}

```
protocol Collection {
   associatedtype Element
   associatedtype Slice
   where Self.Slice: Collection,
        Self.Element == Self.Slice.Element
   var count: Int { get }
   subscript(index: Int) -> Self.Element
   subscript(range: Range<Int>) -> Self.Slice
}
```

The *requirement signature* of protocol P is a list of associated type names and associated requirements.

Associated requirements

- \bullet Conformance: $[\texttt{Self.U: Q}]_P$ for protocol <code>Q</code>
- Same-type: [Self.U == Self.V]_P

(Self.U and Self.V are relative type parameters)

Relative type parameters

Recursively:

• Root: Self

• Member: Self.V.A for relative type parameter Self.V and associated type name A

The generic signature of a protocol P is denoted G_P :

- τ₀
- $[\tau_0: P]$

Relative type parameters of P are type parameters of G_P :

$\texttt{Self.U} \Leftrightarrow \tau_0.\texttt{U}$

 $G_{\mathbf{P}}$ is the "simplest non-trivial" generic signature!

Binary Search Example

Generic signature of binarySearch():

 $G := \tau_0, \tau_1, [\tau_0: \text{ Collection}], [\tau_1: \text{ Comparable}], [\tau_1 = \tau_0.\texttt{Element}]$

Requirement signature of Collection:

- Element
- Slice
- [Self.Slice: Collection] Collection
- [Self.Element == Self.Slice.Element]_{Collection}

```
// Find index of 'e: E' within 'c: C'.
func binarySearch<C, E>(_ c: C, _ e: E) -> Int
    where C: Collection.
          E: Comparable,
          E == C.Element {
  if c.count == 0 \{ return 0 \}
  let mid = c.count / 2
  if c[mid] == e {
    return mid
  } else if c[mid] < e {</pre>
    return binarySearch(c[0 ..< mid], e)</pre>
  } else {
    return mid + binarySearch(c[mid ..< c.count], e)</pre>
}
```

• binarySearch(c[0 ..< mid], e)

- binarySearch(c[0 ..< mid], e)
- c[0 ..< mid] returns a $\tau_0.Slice$

- binarySearch(c[0 ..< mid], e)
- c[0 ..< mid] returns a $\tau_0.Slice$
- Substitution: $\{\tau_0 := \tau_0.\texttt{Slice}, \tau_1 := \tau_1\}$

- binarySearch(c[0 ..< mid], e)</pre>
- c[0 ..< mid] returns a $\tau_0.Slice$
- Substitution: $\{\tau_0:=\tau_0.\texttt{Slice},\tau_1:=\tau_1\}$
- Is the where clause satisfied?

- binarySearch(c[0 ..< mid], e)</pre>
- c[0 ..< mid] returns a $\tau_0.Slice$
- Substitution: $\{\tau_0:=\tau_0.\texttt{Slice},\tau_1:=\tau_1\}$
- Is the where clause satisfied?
 - $[\tau_1: \text{ Comparable}]: trivial$
 - $[\tau_0: \text{ Collection}] \Rightarrow [\tau_0.\text{Slice: Collection}]$
 - $[\tau_1 = \tau_0.\texttt{Element}] \Rightarrow [\tau_1 = \tau_0.\texttt{Slice}.\texttt{Element}]$

Are these "consequences" of G? $[\tau_0.Slice: Collection]$ $[\tau_1 == \tau_0.Slice.Element]$

Are these "consequences" of G? $[\tau_0.Slice: Collection]$ $[\tau_1 == \tau_0.Slice.Element]$

What about τ_0 .Slice.Element itself?

 ${\cal G}$ defines a theory of valid type parameters and derived requirements:

- Elementary derivation steps: $\vdash E_i$
- Inference rules: $D_1, \ldots, D_n \vdash D$

Definition

A derivation $G \vDash D$ is a (well-formed) sequence of derivation steps.

• For each root type parameter τ_i of G:

$$-\tau_i$$
 (Root)

• For each explicit conformance requirement [T: P] of G:

• For each explicit same-type requirement [T == U] of G:

$$\vdash [T == U]$$
(SAME)

 \vdash

requirement signature of P + [T: P] =

more steps

For each $G \models [T: P]$:

• For each associated type A of P:

 $[T: P] \vdash T.A$ (Assoc)

• For each [Self.U: Q]_P:

 $[T: P] \vdash [T.U: Q]$ (AssocConf)

• For each [Self.U == Self.V]_P of P:

 $[T: P] \vdash [T.U == T.V]$ (AssocSame)

Replacement of **Self**:

$$T.U := Self.U / {Self := T}$$

Concatenation:

$\mathtt{T}.\mathtt{U}:=\mathtt{T}+\mathtt{Self}.\mathtt{U}$

Equivalence relation: $G \models [T == U]$

- For each $G \vDash T$:
 - $T \vdash \begin{bmatrix} T & = & T \end{bmatrix}$ (Refl)
- For each $G \models [T == U]$:

$$\begin{bmatrix} T & == & U \end{bmatrix} \vdash \begin{bmatrix} U & == & T \end{bmatrix} \tag{SWAP}$$

• For each $G \vDash [T == U]$ and $G \vDash [U == V]$:

$$[T == U], [U == V] \vdash [T == V]$$
 (Trans)

• For each $G \vDash [U: P]$ and $G \vDash [T == U]$:

$$[\texttt{U: P}], [\texttt{T} == \texttt{U}] \vdash [\texttt{T: P}] \tag{Equiv}$$

• For each $G \models [T: P], G \models [T == U]$, and each associated type A of P:

$$[T: P], [T == U] \vdash [T.A == U.A]$$
(Member)

Recall $G \vDash [\tau_0.Slice: Collection]$ from binarySearch():

Recall $G \vDash [\tau_0.Slice: Collection]$ from binarySearch():

 $\vdash [\tau_0: \text{ Collection}] \tag{Conf}$ $[\tau_0: \text{ Collection}] \vdash [\tau_0.\text{Slice: Collection}] \tag{AssocConf}$

Recall $G \vDash [\tau_0.Slice: Collection]$ from binarySearch():

 $\begin{array}{ll} \vdash [\tau_0: \mbox{ Collection}] & (\mbox{Conf}) \\ [\tau_0: \mbox{ Collection}] \vdash [\tau_0. \mbox{Slice: Collection}] & (\mbox{AssocConf}) \end{array}$

In fact,

```
[\tau_0.\texttt{Slice}^n: \texttt{Collection}] \vdash [\tau_0.\texttt{Slice}^{n+1}: \texttt{Collection}] (AssocConf)
```

 $[{\tt Self.Slice: Collection}]_{\tt Collection}$ generates an infinite family of conformance requirements.

 $[{\tt Self.Slice: Collection}]_{\tt Collection}$ generates an infinite family of conformance requirements.

Definition

[Self.U: $Q]_P$ is recursive if G_Q uses P.

 $[{\tt Self.Slice: Collection}]_{\tt Collection}$ generates an infinite family of conformance requirements.

Definition

[Self.U: $Q]_P$ is recursive if G_Q uses P.

We just proved:

Theorem

If G uses a protocol with a recursive associated conformance requirement, then G generates an infinite theory.

Derived Same-Type Example

Recall $G \vDash [\tau_1 = \tau_0.$ Slice.Element] from binarySearch():

$$\begin{array}{ll} \vdash [\tau_1 == \tau_0.\texttt{Element}] & (\texttt{SAME}) \\ [\tau_0: \texttt{Collection}] & \\ \quad \vdash [\tau_0.\texttt{Element} == \tau_0.\texttt{Slice}.\texttt{Element}] & (\texttt{AssocSAME}) \\ [\tau_1 == \tau_0.\texttt{Element}], [\tau_0.\texttt{Element} == \tau_0.\texttt{Slice}.\texttt{Element}] & \\ \quad \vdash [\tau_1 == \tau_0.\texttt{Slice}.\texttt{Element}] & (\texttt{Trans}) \end{array}$$

Derived Same-Type Example

Recall $G \vDash [\tau_1 = \tau_0.$ Slice.Element] from binarySearch():

$$\begin{array}{ll} \vdash [\tau_1 \ == \ \tau_0. \texttt{Element}] & (\texttt{SAME}) \\ [\tau_0: \ \texttt{Collection}] & \\ \quad \vdash [\tau_0. \texttt{Element} \ == \ \tau_0.\texttt{Slice}.\texttt{Element}] & (\texttt{AssocSAME}) \\ [\tau_1 \ == \ \tau_0.\texttt{Element}], [\tau_0. \texttt{Element} \ = \ \tau_0.\texttt{Slice}.\texttt{Element}] & \\ \quad \vdash [\tau_1 \ == \ \tau_0.\texttt{Slice}.\texttt{Element}] & (\texttt{Trans}) \end{array}$$

In fact,

$$\begin{split} [\tau_0.\texttt{Slice}^n: \texttt{Collection}] \\ &\vdash [\tau_0.\texttt{Slice}^n.\texttt{Element} == \tau_0.\texttt{Slice}^{n+1}.\texttt{Element}] \quad (\texttt{AssocSame}) \\ [\tau_1 == \tau_0.\texttt{Element}], [\tau_0.\texttt{Slice}^n.\texttt{Element} == \tau_0.\texttt{Slice}^{n+1}.\texttt{Element}] \\ &\vdash [\tau_1 == \tau_0.\texttt{Slice}^{n+1}.\texttt{Element}] \quad (\texttt{Trans}) \end{split}$$

Generic signature G of binarySearch():

- $\{\tau_0\}$
- $\{\tau_1, \tau_0. \texttt{Element}, \dots, \tau_0. \texttt{Slice}^n. \texttt{Element}, \dots\}$
- $\{\tau_0.\texttt{Slice}\}$
- ...
- $\{\tau_0.\texttt{Slice}^n\}$
- . . .

Two fundamental problems:

Problem 1: Conformance

- Instance: Generic signature G, type parameter T, protocol P.
- Question: Is $G \vDash [T: P]$?

Problem 2: Equivalence

- Instance: Generic signature G, type parameters T and U.
- Question: Is $G \models [T == U]$?

generic signature ↓ string rewrite system

Definition

Finite alphabet A for generic signature G:

- τ_i : for each root type parameter of G.
- $\bullet~A:$ for each unique associated type name A.
- [P]: for each protocol P used by G.

Random example:

protocol Chicken { associatedtype Egg }
protocol Egg { associatedtype Egg }

```
A := \{\tau_0, \tau_1, \tau_2, [\texttt{Chicken}], [\texttt{Egg}], \texttt{Egg}\}
```

Definition

For any set A:

- A^* is the *free monoid* generated by A.
- $t \in A^*$ is a finite string, called a *term*.
- $x \cdot y$ is concatenation of x and y.
- ε is the empty term.

Definition

For any set A:

- A^* is the *free monoid* generated by A.
- $t \in A^*$ is a finite string, called a *term*.
- $x \cdot y$ is concatenation of x and y.
- ε is the empty term.

Definitions

- $|t| \in \mathbb{N}$ is the *length* of *t*.
- If $t = x \cdot y \cdot z$, then y is a *subterm* of t.
- If |y| < |t|, then y is a proper subterm.

Definition of φ

Type parameter \mathtt{T} maps to a term $\varphi(\mathtt{T})\in A^*:$

$$\varphi(\tau_i \cdot A_1 \cdot \cdot \cdot A_n) := \tau_i \cdot A_1 \cdot \cdot \cdot A_n$$

Definition of φ

Type parameter \mathtt{T} maps to a term $\varphi(\mathtt{T})\in A^*:$

$$\varphi(\mathsf{\tau}_i.\mathtt{A}_1\ldots\mathtt{A}_n):=\mathsf{\tau}_i\cdot\mathtt{A}_1\cdots\mathtt{A}_n$$

Definition of $\varphi_{\mathtt{P}}$

Relative type parameter Self.U maps to a term $\varphi_{\mathsf{P}}(\mathsf{Self.U}) \in A^*$:

$$\varphi_{\mathtt{P}}(\mathtt{Self}.\mathtt{A}_1\ldots\mathtt{A}_n) := [\mathtt{P}]\cdot\mathtt{A}_1\cdots\mathtt{A}_n$$

$\langle A; R \rangle$

- $A := \{a_1, \ldots, a_n\}$: finite alphabet of symbols
- $R := \{(u_1 \sim v_1), \dots, (u_m \sim v_m)\}$: finite set of rewrite rules
- ~: the term equivalence relation on A^* generated by R.

• If $(u \sim v) \in R$, then $u \sim v$.

- If $(u \sim v) \in R$, then $u \sim v$.
- If $x \sim y$ and $w, z \in A^*$, then $w \cdot x \cdot z \sim w \cdot y \cdot z$.

- If $(u \sim v) \in R$, then $u \sim v$.
- If $x \sim y$ and $w, z \in A^*$, then $w \cdot x \cdot z \sim w \cdot y \cdot z$.
- If $x \in A^*$, then $x \sim x$.
- If $x \sim y$, then $y \sim x$.
- If $x \sim y$ and $y \sim z$, then $x \sim z$.

- If $(u \sim v) \in R$, then $u \sim v$.
- If $x \sim y$ and $w, z \in A^*$, then $w \cdot x \cdot z \sim w \cdot y \cdot z$.
- If $x \in A^*$, then $x \sim x$.
- If $x \sim y$, then $y \sim x$.
- If $x \sim y$ and $y \sim z$, then $x \sim z$.

The derivations of this theory are called *rewrite paths*.

Definition of λ

Generic requirement D maps to a rule $\lambda(D) \in A^* \times A^*$:

$$\begin{split} \lambda([\mathtt{T}\colon \mathtt{P}]) &:= (\varphi(\mathtt{T})\cdot[\mathtt{P}]\sim\varphi(\mathtt{T})) \\ \lambda([\mathtt{T}\texttt{=}\mathtt{U}]) &:= (\varphi(\mathtt{T})\sim\varphi(\mathtt{U})) \end{split}$$

Definition of λ

Generic requirement D maps to a rule $\lambda(D) \in A^* \times A^*$:

$$\begin{split} \lambda([\mathtt{T}\colon \mathtt{P}]) &:= (\varphi(\mathtt{T})\cdot[\mathtt{P}]\sim\varphi(\mathtt{T})) \\ \lambda([\mathtt{T}\texttt{=}\mathtt{U}]) &:= (\varphi(\mathtt{T})\sim\varphi(\mathtt{U})) \end{split}$$

Definition of λ_{P}

Associated requirement D in protocol P maps to a rule $\lambda_{\mathsf{P}}(D) \in A^* \times A^*$:

$$\begin{split} \lambda_{\mathrm{P}}([\texttt{Self.U: } \mathbb{Q}]_{\mathrm{P}}) &:= (\varphi_{\mathrm{P}}(\texttt{Self.U}) \cdot [\mathbb{Q}] \sim \varphi_{\mathrm{P}}(\texttt{Self.U}))\\ \lambda_{\mathrm{P}}([\texttt{Self.U} == \texttt{Self.V}]_{\mathrm{P}}) &:= (\varphi_{\mathrm{P}}(\texttt{Self.U}) \sim \varphi_{\mathrm{P}}(\texttt{Self.V})) \end{split}$$

Rewrite system for generic signature G of binarySearch():

- $\textcircled{0} \ (\tau_0 \cdot [\texttt{Collection}] \sim \tau_0)$
- $\textcircled{2} \ (\tau_0 \cdot \texttt{Element} \sim \tau_1)$
- $\textbf{0} \ (\tau_1 \cdot [\texttt{Comparable}] \sim \tau_1)$

Rewrite system for generic signature G of binarySearch():

- $\textcircled{0} \ (\tau_0 \cdot [\texttt{Collection}] \sim \tau_0)$
- $\textbf{2} \ (\tau_0 \cdot \texttt{Element} \sim \tau_1)$
- $\textbf{0} \ (\tau_1 \cdot [\texttt{Comparable}] \sim \tau_1)$
- $\texttt{O} \ ([\texttt{Collection}] \cdot \texttt{Slice} \cdot [\texttt{Collection}] \sim [\texttt{Collection}] \cdot \texttt{Slice})$
- $\textbf{O} \ ([\texttt{Collection}] \cdot \texttt{Slice} \cdot \texttt{Element} \sim [\texttt{Collection}] \cdot \texttt{Element})$

Theorem

Assume G is valid, $G \vDash T$, $G \vDash U$. Then,

- $G \vDash [T: P]$ if and only if $\varphi(T) \cdot [P] \sim \varphi(T)$.
- $G \vDash [T == U]$ if and only if $\varphi(T) \sim \varphi(U)$.

Theorem

Assume G is valid, $G \vDash T$, $G \vDash U$. Then,

- $G \vDash [T: P]$ if and only if $\varphi(T) \cdot [P] \sim \varphi(T)$.
- $G \vDash [T == U]$ if and only if $\varphi(T) \sim \varphi(U)$.

 (\Rightarrow) Proof by structural induction on derivations:

- Elementary derivation step: property holds by construction.
- For each inference rule, assume property holds for all assumptions, show it holds for consequence.

```
To show \lambda([\tau_0.Slice: Collection]):
```

$$\begin{split} \tau_0 \cdot \texttt{Slice} \cdot [\texttt{Collection}] &\sim \tau_0 \cdot [\texttt{Collection}] \cdot \texttt{Slice} \cdot [\texttt{Collection}] \\ &\sim \tau_0 \cdot [\texttt{Collection}] \cdot \texttt{Slice} \\ &\sim \tau_0 \cdot \texttt{Slice} \end{split}$$

Term Concatenation

$$\begin{array}{cccc} {\tt T} & + & {\tt Self.U} & = & {\tt T.U} \\ {\tt \Downarrow} & {\tt \Downarrow} & {\tt \Downarrow} \\ \varphi({\tt T}) & \cdot & \varphi_{\tt P}({\tt Self.U}) & \neq & \varphi({\tt T.U}) \end{array}$$

Term Concatenation

$$\begin{array}{cccc} {\tt T} & + & {\tt Self.U} & = & {\tt T.U} \\ {\tt \Downarrow} & {\tt \Downarrow} & {\tt \Downarrow} & {\tt \Downarrow} \\ \varphi({\tt T}) & \cdot & \varphi_{\tt P}({\tt Self.U}) & \neq & \varphi({\tt T.U}) \end{array}$$

But if $\varphi(\mathbf{T}) \cdot [\mathbf{P}] \sim \varphi(\mathbf{T})$, then $\varphi(\mathbf{T}) \cdot \varphi_{\mathbf{P}}(\texttt{Self.U}) \sim \varphi(\mathbf{T.U})$:

Term Concatenation

$$\begin{array}{cccc} {\tt T} & + & {\tt Self.U} & = & {\tt T.U} \\ {\tt \Downarrow} & {\tt \Downarrow} & {\tt \Downarrow} & {\tt \Downarrow} \\ \varphi({\tt T}) & \cdot & \varphi_{\tt P}({\tt Self.U}) & \neq & \varphi({\tt T.U}) \end{array}$$

But if $\varphi(\mathbf{T}) \cdot [\mathbf{P}] \sim \varphi(\mathbf{T})$, then $\varphi(\mathbf{T}) \cdot \varphi_{\mathbf{P}}(\texttt{Self.U}) \sim \varphi(\mathbf{T.U})$:

$$\underbrace{\varphi(\mathtt{T})}_t \cdot \underbrace{\varphi_{\mathtt{P}}(\mathtt{Self.U})}_{[\mathtt{P}] \cdot u} \sim \underbrace{\varphi(\mathtt{T.U})}_{t \cdot u}$$

Because

$$t \cdot [\mathbf{P}] \cdot u \sim t \cdot u$$

$$\begin{split} [\texttt{T: P}] \vdash [\texttt{T.U: Q}] & (\text{AssocConf}) \\ \text{Assume } \varphi(\texttt{T}) \cdot [\texttt{P}] \sim \varphi(\texttt{T}) \text{ and show } \varphi(\texttt{T.U}) \cdot [\texttt{Q}] \sim \varphi(\texttt{T.U}) \text{:} \\ & \varphi(\texttt{T.U}) \cdot [\texttt{Q}] \\ & \sim \varphi(\texttt{T}) \cdot \varphi_{\texttt{P}}(\texttt{Self.U}) \cdot [\texttt{Q}] \\ & \sim \varphi(\texttt{T}) \cdot \varphi_{\texttt{P}}(\texttt{Self.U}) \\ & \sim \varphi(\texttt{T.U}) \end{split}$$

To show $\lambda([\tau_1 = \tau_0.Slice.Element])$:

```
\begin{split} \tau_0 \cdot \texttt{Slice} \cdot \texttt{Element} &\sim \tau_0 \cdot [\texttt{Collection}] \cdot \texttt{Slice} \cdot \texttt{Element} \\ &\sim \tau_0 \cdot [\texttt{Collection}] \cdot \texttt{Element} \\ &\sim \tau_0 \cdot \texttt{Element} \\ &\sim \tau_1 \end{split}
```

$$\begin{split} [\texttt{T: P}] \vdash [\texttt{T.U} == \texttt{T.V}] & (\text{AssocSame}) \\ \text{Assume } \varphi(\texttt{T}) \cdot [\texttt{P}] \sim \varphi(\texttt{T}) \text{ and show } \varphi(\texttt{T.U}) \sim \varphi(\texttt{T.V}): \\ & \varphi(\texttt{T.U}) \\ & \sim \varphi(\texttt{T}) \cdot \varphi_{\texttt{P}}(\texttt{Self.U}) \\ & \sim \varphi(\texttt{T}) \cdot \varphi_{\texttt{P}}(\texttt{Self.V}) \\ & \sim \varphi(\texttt{T.V}) \end{split}$$

We've reduced everything to...

The word problem

- Instance: String rewrite system $\langle A; R \rangle$, terms $x, y \in A^*$.
- Question: Is $x \sim y$?

R defines a reduction relation \rightarrow on A^* :

• If
$$(u \to v) \in R$$
, then $u \to v$.

- If $x \to y$ and $w, z \in A^*$, then $w \cdot x \cdot z \to w \cdot y \cdot z$.
- If $x \in A^*$, then $x \to x$.
- If $x \to y$ and $y \to z$, then $x \to z$.

(Exactly like \sim but not symmetric!)

Algorithm

Outputs the normal form \tilde{t} of t:

- If t = xuz for some $(u \to v) \in R$, set t to xvz and continue.
- Otherwise, output t.

If $t = \tilde{t}$, then t is *irreducible*.

56 / 109

Algorithm

Outputs the normal form \tilde{t} of t:

- If t = xuz for some $(u \to v) \in R$, set t to xvz and continue.
- Otherwise, output t.

If $t = \tilde{t}$, then t is *irreducible*.

Properties

- If \tilde{t} exists, then $t \sim \tilde{t}$.
- If $\tilde{x} = \tilde{y}$, then $x \sim y$.

Existence

$$\langle a; a \to aa \rangle$$

Normal form of a does not exist:

 $a \rightarrow aa \rightarrow aaa \rightarrow aaaa \rightarrow \cdots$

Existence

$$\langle a; a \to aa \rangle$$

Normal form of a does not exist:

 $a \rightarrow aa \rightarrow aaa \rightarrow aaaa \rightarrow \cdots$

Uniqueness

$$\langle a, b, c; ab \to a, bc \to b \rangle$$

ac and a are irreducible but also $ac \sim a$:

$$abc \to ab \to a$$

 $abc \to ac$

 \rightarrow is Noetherian if normal form algorithm terminates.

 \rightarrow is Noetherian if normal form algorithm terminates.

Definition

A reduction order on A^* satisfies:

- If u > v, then $x \cdot u \cdot z > x \cdot v \cdot z$
- No infinite descending chains: $x_1 > x_2 > \cdots > x_n > \cdots$

Theorem

If each $(u \to v) \in R$ is *oriented* so that u < v, then \to is Noetherian.

Proof: If $t \to t_1 \to t_2 \to \cdots$, then $t > t_1 > t_2 > \cdots$ (property 1). Therefore $\tilde{t} = t_n$ for some *n* (property 2).

 \rightarrow is *confluent* whenever $x \rightarrow y$ and $x \rightarrow z$, there exists w such that $y \rightarrow w$ and $z \rightarrow w$.

Example

$$\langle a,b,c;ab \rightarrow a,bc \rightarrow b,ac \rightarrow a \rangle$$

Adding $(ac \rightarrow a)$ does not change ~ but makes \rightarrow confluent. This is called *completion*.

 $\langle A; R \rangle$ is a *convergent rewrite system* if \rightarrow is Noetherian and confluent.

Church-Rosser Theorem

Assume $\langle A; R \rangle$ convergent. Then $x \sim y$ if and only if $\tilde{x} = \tilde{y}$.

If $t \to t_1$ and $t \to t_2$, (t_1, t_2) is a critical pair.

If $t \to t_1$ and $t \to t_2$, (t_1, t_2) is a critical pair.

Newman's Lemma

Assume \rightarrow is Noetherian. Left-hand sides of rewrite rules generate a finite set of critical pairs.

Algorithm

Resolving critical pair (t_1, t_2) :

•
$$t_1 \to \tilde{t_1}, t_2 \to \tilde{t_2}.$$

• If
$$\tilde{t_1} = \tilde{t_2}$$
: critical pair is *trivial*.

• If
$$\tilde{t_1} > \tilde{t_2}$$
: add $(\tilde{t_1} \to \tilde{t_2})$ to R .

• If
$$\tilde{t_1} < \tilde{t_2}$$
: add $(\tilde{t_2} \to \tilde{t_1})$ to R .

$$u \cdot v \cdot w$$

 v

Overlap of the first kind

If
$$(u \cdot v \cdot w \to x), (v \to y) \in R$$

• Delete
$$(u \cdot v \cdot w \to x)$$
.

• Resolve
$$(u \cdot y \cdot w, x)$$
.

$$u \cdot v$$

 $v \cdot w$

Overlap of the second kind

If
$$(u \cdot v \to x), (v \cdot w \to y) \in R$$
,

• Resolve
$$(x \cdot w, u \cdot y)$$
.

Slava Pestov (Apple)

Reduction

For all $(u \to v) \in R$ where $v \neq \tilde{v}$,

• Replace $(u \to v)$ with $(u \to \tilde{v})$.

Knuth-Bendix completion might not terminate!

Knuth-Bendix completion might not terminate!

Question

What just defined the *basic lowering*. Does the basic lowering accept *all* generic signatures?

Finite Cross-Section

G has a *finite cross-section* if set of equivalence classes is finite.

finite theory \subsetneq finite cross-section

G has a *finite cross-section* if set of equivalence classes is finite.

finite theory \subsetneq finite cross-section

protocol Z2 {
 associatedtype A where Self.A: Z2, Self.A.A == Self
}

 G_{Z2} has an infinite theory: τ_0 , τ_0 . A, τ_0 . A. A, τ_0 . A. A. A, ...

G has a *finite cross-section* if set of equivalence classes is finite.

finite theory \subsetneq finite cross-section

```
protocol Z2 {
   associatedtype A where Self.A: Z2, Self.A.A == Self
}
```

 G_{Z2} has an infinite theory: τ_0 , τ_0 . A, τ_0 . A. A, τ_0 . A. A. A, ...

 G_{Z2} has a finite cross-section:

Representative:	General form:
τ_0	$ au_0$. A ²ⁿ
$ au_0$.A	$ au_0$. A $^{2n+1}$

Theorem

- $\langle A; R \rangle$ is basic lowering of G. Completion terminates if and only if:
 - G has a finite cross-section.
 - For each protocol P used by G, G_P has a finite cross-section.

 $G_{\texttt{Collection}}$ does not have a finite cross-section. Let's remove everything but the recursive "slice" type:

```
protocol N {
   associatedtype A: N
}
```

Rewrite rules:

- $([N] \cdot A \cdot [N] \rightarrow [N] \cdot A)$
- $(\tau_0 \cdot [\mathtt{N}] \to \tau_0)$

Overlapping Rules

$$\begin{aligned} \tau_0 \cdot [\mathtt{N}] \\ [\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \end{aligned}$$

$$\begin{aligned} \tau_0 \cdot [\mathtt{N}] \\ [\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \end{aligned}$$

$$\begin{split} & \boldsymbol{\tau}_0 \cdot [\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \to \boldsymbol{\tau}_0 \cdot \mathtt{A} \cdot [\mathtt{N}] \\ & \boldsymbol{\tau}_0 \cdot [\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \to \boldsymbol{\tau}_0 \cdot [\mathtt{N}] \cdot \mathtt{A} \to \boldsymbol{\tau}_0 \cdot \mathtt{A} \end{split}$$

$$\begin{aligned} \tau_0 \cdot \begin{bmatrix} \mathtt{N} \end{bmatrix} \\ \begin{bmatrix} \mathtt{N} \end{bmatrix} \cdot \mathtt{A} \cdot \begin{bmatrix} \mathtt{N} \end{bmatrix} \end{aligned}$$

Overlapping Rules

$$\begin{aligned} \tau_0 \cdot \mathtt{A} \cdot [\mathtt{N}] \\ [\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \end{aligned}$$

Overlapping Rules

$$\begin{aligned} \tau_0 \cdot \mathtt{A} \cdot [\mathtt{N}] \\ [\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \end{aligned}$$

$$\begin{split} &(\boldsymbol{\tau}_0 \cdot [\mathtt{N}] \to \boldsymbol{\tau}_0) \\ &(\boldsymbol{\tau}_0 \cdot \mathtt{A} \cdot [\mathtt{N}] \to \boldsymbol{\tau}_0 \cdot \mathtt{A}) \\ &(\boldsymbol{\tau}_0 \cdot \mathtt{A} \cdot \mathtt{A} \cdot [\mathtt{N}] \to \boldsymbol{\tau}_0 \cdot \mathtt{A} \cdot \mathtt{A}) \\ &(\boldsymbol{\tau}_0 \cdot \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A} \cdot [\mathtt{N}] \to \boldsymbol{\tau}_0 \cdot \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A}) \end{split}$$

. . .

$[\mathtt{P}]\cdot \mathtt{A} \to [\mathtt{P}]\mathtt{A}$

For each associated type A of each protocol [P],

- $\bullet \ A := A \cup \{ [\mathtt{P}]\mathtt{A} \}$
- $R := R \cup \{([P] \cdot A \rightarrow [P]A)\}$

Reduction order: $[P] < [P]A < A < \tau_i$

Theorem

Adding a new symbol a and rewrite rule $(t \rightarrow a)$ does not change the term equivalence relation \sim .

```
protocol N {
   associatedtype A: N
}
```

Rewrite rules:

- $([N] \cdot A \rightarrow [N]A)$ —**new!**
- $\bullet \ ([\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \to [\mathtt{N}] \cdot \mathtt{A})$
- $\bullet \ (\tau_0 \cdot [\mathtt{N}] \to \tau_0)$

New Overlapping Rules

$\begin{bmatrix} N \end{bmatrix} \cdot A \cdot \begin{bmatrix} N \end{bmatrix}$ $\begin{bmatrix} N \end{bmatrix} \cdot A$

$$\begin{bmatrix} N \end{bmatrix} \cdot \mathbf{A} \cdot \begin{bmatrix} N \end{bmatrix}$$
$$\begin{bmatrix} N \end{bmatrix} \cdot \mathbf{A}$$

$$\begin{split} & [\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \to [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \\ & [\mathtt{N}] \cdot \mathtt{A} \cdot [\mathtt{N}] \to [\mathtt{N}] \cdot \mathtt{A} \to [\mathtt{N}] \mathtt{A} \end{split}$$

Slava Pestov (Apple)

$$\begin{bmatrix} N \end{bmatrix} \cdot A \cdot \begin{bmatrix} N \end{bmatrix}$$
$$\begin{bmatrix} N \end{bmatrix} \cdot A$$

$$\begin{split} & [\mathrm{N}] \cdot \mathrm{A} \cdot [\mathrm{N}] \to [\mathrm{N}] \mathrm{A} \cdot [\mathrm{N}] \\ & [\mathrm{N}] \cdot \mathrm{A} \cdot [\mathrm{N}] \to [\mathrm{N}] \cdot \mathrm{A} \to [\mathrm{N}] \mathrm{A} \end{split}$$

 $([\mathtt{N}]\mathtt{A}\cdot[\mathtt{N}]\to[\mathtt{N}]\mathtt{A})$

Slava Pestov (Apple)

Protocols and Associated Types

2023

75 / 109

$\begin{matrix} [N] \mathsf{A} \, \cdot \, [N] \\ & [N] \, \cdot \, \mathsf{A} \end{matrix}$

$$\begin{matrix} [N] A \cdot [N] \\ [N] \cdot A \end{matrix}$$

$$\begin{split} & [N]A\cdot[N]\cdot A \to [N]A\cdot A \\ & [N]A\cdot[N]\cdot A \to [N]A\cdot[N]A \end{split}$$

$$\begin{split} [\mathtt{N}]\mathtt{A}\,\cdot\,[\mathtt{N}] \\ [\mathtt{N}]\,\cdot\,\mathtt{A} \end{split}$$

$$\begin{split} & [N]A \cdot [N] \cdot A \to [N]A \cdot A \\ & [N]A \cdot [N] \cdot A \to [N]A \cdot [N]A \\ & ([N]A \cdot A \to [N]A \cdot [N]A) \end{split}$$

Slava Pestov (Apple)

$$egin{array}{l} au_0 \cdot [\mathtt{N}] \ [\mathtt{N}] \cdot \mathtt{A} \end{array}$$

$$\begin{array}{c} \tau_0 \cdot [\mathtt{N}] \\ [\mathtt{N}] \cdot \mathtt{A} \end{array}$$

$$\begin{split} &\tau_0\cdot[\mathtt{N}]\cdot\mathtt{A}\to\tau_0\cdot\mathtt{A}\\ &\tau_0\cdot[\mathtt{N}]\cdot\mathtt{A}\to\tau_0\cdot[\mathtt{N}]\mathtt{A} \end{split}$$

$$\begin{array}{c} \tau_0 \cdot [\mathtt{N}] \\ [\mathtt{N}] \cdot \mathtt{A} \end{array}$$

$$egin{aligned} & \mathbf{ au}_0 \cdot [\mathtt{N}] \cdot \mathtt{A} &
ightarrow \mathbf{ au}_0 \cdot \mathtt{A} \ & \mathbf{ au}_0 \cdot [\mathtt{N}] \cdot \mathtt{A} &
ightarrow \mathbf{ au}_0 \cdot [\mathtt{N}] \mathtt{A} \ & (\mathbf{ au}_0 \cdot \mathtt{A} &
ightarrow \mathbf{ au}_0 \cdot [\mathtt{N}] \mathtt{A}) \end{aligned}$$

Slava Pestov (Apple)

77/109

We have a convergent rewrite system!

Conformance rules:

- $\bullet \ ([\mathtt{N}]\mathtt{A} \cdot [\mathtt{N}] \to [\mathtt{N}]\mathtt{A})$
- $(\tau_0 \cdot [\mathtt{N}] \to \tau_0)$

Name reduction rules:

- $([N] \cdot A \rightarrow [N]A)$
- $([N]A \cdot A \rightarrow [N]A \cdot [N]A)$
- $(\tau_0 \cdot \mathtt{A} \to \tau_0 \cdot [\mathtt{N}]\mathtt{A})$

$G_{\mathtt{N}} \vDash [\tau_0.\mathtt{A}.\mathtt{A}.\mathtt{A}: \mathtt{N}]. \text{ Therefore, } \tau_0 \cdot \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A} \cdot [\mathtt{N}] \sim \tau_0 \cdot \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A}:$

 $G_{\mathbb{N}} \vDash [\tau_0.A.A.A: \mathbb{N}].$ Therefore, $\tau_0 \cdot A \cdot A \cdot A \cdot [\mathbb{N}] \sim \tau_0 \cdot A \cdot A \cdot A:$

$$\begin{split} \tau_0 \cdot \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A} &\to \tau_0 \cdot [\mathtt{N}] \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A} \\ &\to \tau_0 \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \cdot \mathtt{A} \\ &\to \tau_0 \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \end{split}$$

 $G_{\mathbb{N}} \vDash [\tau_0.A.A.A: \mathbb{N}].$ Therefore, $\tau_0 \cdot A \cdot A \cdot A \cdot [\mathbb{N}] \sim \tau_0 \cdot A \cdot A \cdot A:$

$$\begin{split} \tau_0 \cdot \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A} &\to \tau_0 \cdot [\mathtt{N}] \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A} \\ &\to \tau_0 \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \cdot \mathtt{A} \\ &\to \tau_0 \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \end{split}$$

Other side:

$$\begin{split} \tau_0 \cdot \mathtt{A} \cdot \mathtt{A} \cdot \mathtt{A} \cdot [\mathtt{N}] &\to \tau_0 \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \\ &\to \tau_0 \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \cdot [\mathtt{N}] \mathtt{A} \end{split}$$

Full lowering accepts:

- All generic signatures with finite cross-section.
- Some generic signatures with infinite cross-section: $G_{\mathbb{N}}$, $G_{\texttt{Collection}}$, many more.

Question

Does the full lowering accept *all* generic signatures?

string rewrite system ↓ generic signature

}

$$M := \langle a, b, c; ab \sim a, bc \sim b \rangle$$

protocol M {

}

$$M := \langle a, b, c; ab \sim a, bc \sim b \rangle$$

protocol M {

- associated type ${\tt A}$
- associatedtype B
- associated type $\ensuremath{\mathtt{C}}$

$$M := \langle a, b, c; ab \sim a, bc \sim b \rangle$$

protocol M {

- associatedtype A: M
- associatedtype B: M
- associatedtype C: M

}

$$M := \langle a, b, c; ab \sim a, bc \sim b \rangle$$

```
protocol M {
  associatedtype A: M
  associatedtype B: M
  associatedtype C: M
   where A.B == A, B.C == B
}
```

```
We have ac \sim a but ca \not\sim b:
```

```
func wordProblems<T: M>(_: T.Type) {
  sameType(T.A.C.self, T.A.self) // okay
  sameType(T.C.A.self, T.B.self) // type error
}
```

func sameType<T>(_: T.Type, _: T.Type) {}

Understanding the Encoding

 $G_{\mathbb{M}}$ encodes the word problem in $\langle A; R \rangle$:

- $t \in A^*$ if and only if $G_{\mathbb{M}} \models \mathbb{T}$.
- $u \sim v$ if and only if $G_{\mathsf{M}} \models [\mathsf{U} = \mathsf{V}].$

Understanding the Encoding

 $G_{\mathbb{M}}$ encodes the word problem in $\langle A; R \rangle$:

- $t \in A^*$ if and only if $G_{\mathbb{M}} \models \mathbb{T}$.
- $u \sim v$ if and only if $G_{\mathsf{M}} \models [\mathsf{U} = \mathsf{V}].$

$$\begin{array}{c} \langle A; R \rangle \\ \Downarrow \\ G_{\mathsf{M}} \\ \Downarrow \\ \langle A', R' \rangle \end{array}$$

Historical sketch:

- Thue (1914): word problem
- Gödel (1931): incompleteness
- Turing (1936): effective computability
- Post (1945): word problem is undecidable

Historical sketch:

- Thue (1914): word problem
- Gödel (1931): incompleteness
- Turing (1936): effective computability
- Post (1945): word problem is undecidable

Theorem

(Tseitin, 1956) Undecidable if a given term t is equivalent to *aaa*:

 $\langle a, b, c, d, e; ac \sim ca, ad \sim da, bc \sim cb, bd \sim db, eca \sim ce,$ $cdca \sim cdcae, caaa \sim aaa, daaa \sim aaa \rangle$

```
// error: cannot build rewrite system for protocol;
// rule length limit exceeded
protocol M {
  associatedtype A: M
  associatedtype B: M
  associatedtype C: M
  associatedtype D: M
  associatedtype E: M
   where A.C == C.A, A.D == D.A,
      B.C == C.B, B.D == D.B,
      E.C.A == C.E, C.D.C.A == C.D.C.A.E,
      C.A.A.A == A.A.A, D.A.A.A == A.A.A
}
```

Undecidable problem

- Instance: Type parameter T.
- Question: Is $G_{\mathbb{M}} \models [\mathbb{T} = \tau_0 . \mathbb{A} . \mathbb{A} . \mathbb{A}]$?

• Formal theory of associated requirements.

- Formal theory of associated requirements.
- Generic signature \Rightarrow string rewrite system.

- Formal theory of associated requirements.
- Generic signature \Rightarrow string rewrite system.
- Derived requirements \Rightarrow word problem.

- Formal theory of associated requirements.
- Generic signature \Rightarrow string rewrite system.
- Derived requirements \Rightarrow word problem.
- Knuth-Bendix solves word problem if successful.

- Formal theory of associated requirements.
- Generic signature \Rightarrow string rewrite system.
- Derived requirements \Rightarrow word problem.
- Knuth-Bendix solves word problem if successful.
- finite theory \subsetneq finite cross-section \subsetneq all generic signatures

- Formal theory of associated requirements.
- Generic signature \Rightarrow string rewrite system.
- Derived requirements \Rightarrow word problem.
- Knuth-Bendix solves word problem if successful.
- finite theory \subsetneq finite cross-section \subsetneq all generic signatures
- Accept *all* finite cross-section, and *some* infinite cross-section.

- Formal theory of associated requirements.
- Generic signature \Rightarrow string rewrite system.
- Derived requirements \Rightarrow word problem.
- Knuth-Bendix solves word problem if successful.
- finite theory \subsetneq finite cross-section \subsetneq all generic signatures
- Accept *all* finite cross-section, and *some* infinite cross-section.
- No decision procedure can accept *all* generic signatures.

- Separately-compiled generics (2013)
- Standard library collections (2015)
- Recursive conformances (2017)
- Undecidability (2020)
- Requirement Machine (2022)
- Formal model (2023)

- Reference guide, *Compiling Swift Generics*: download.swift.org/docs/assets/generics.pdf
- Recorded talk, *Implementing Swift Generics*: www.youtube.com/watch?v=ctS8FzqcRug

Thank You!

Backup Slides

func identity<T>(x: T) -> T { return x }

Calling convention of identity():

- Pointer to type metadata for T
- Pointer to argument of type T
- Pointer to return buffer for value of type T

Type metadata:

- size
- alignment
- destroy value when it leaves scope
- copy value if use extends lifetime
- move value if this is final use

Implementations:

- Trivial types (Int, etc): bitwise copy
- Reference types: copy +1, destroy -1
- Generic structs and enums (Either<U, V>, etc):
 - Instantiation function
 - $\bullet\,$ Compute size and alignment from U and V
 - Generic move, copy, destroy operations

func firstTwo<S>(_ s: inout S) -> Pair<S.Element>
 where S: Stream

Calling convention of firstTwo():

- Pointer to type metadata for S
- Pointer to *witness table* for [S: Stream]

Witness table layout of [S: Stream]:

- Type metadata for Element
- Concrete implementation of next()

Problem 3: Name lookup

- Instance: Generic signature G, type parameter T.
- Question: All protocols P such that $G \models [T: P]$?

Type checking "foo.bar" where foo is a T:

- Some P where $G \vDash [T: P]$ must declare a member named bar.
- Reduces to Problem 1.

Problem 4: Type parameter validity

- Instance: Generic signature G, type parameter T.
- Question: Is $G \vDash T$?

Reduces to Problem 3:

- τ_i validity: immediate.
- U.A: valid iff exists P declaring A such that $G \vDash [U: P]$.

Problem 5: Generic signature validity

- Instance: Generic signature G.
- Question: Is G valid?

Generic signature of binarySearch():

 $G := \tau_0, \tau_1, [\tau_0: \text{ Collection}], [\tau_1: \text{ Comparable}], [\tau_1 = \tau_0. \texttt{Element}]$

Now, $G \vDash [\tau_1 = \tau_0.\texttt{Element}]$ but $G \nvDash \tau_0.\texttt{Element}!$

Valid generic requirements

```
• [T: P] is valid if G \vDash T.
```

• [T == U] is valid if $G \vDash T$ and $G \vDash U$.

Valid associated requirements

• [Self.U:
$$Q]_P$$
 is valid if $G_P \vDash \tau_0.U$.

• [Self.U == Self.V]_P is valid if $G_P \vDash \tau_0.U$ and $G_P \vDash \tau_0.V$.

Theorem

Assume all explicitly-written requirements of G are valid. Then all derived requirements of G are valid.

- Base case $\vdash E_i$: E_i is known valid.
- Inductive step $D_1, \ldots, D_n \vdash D$: show D is valid if all D_i are.

Interesting cases:

 $\begin{array}{ll} [T: \ P] \vdash [T.U: \ Q] & (AssocConf) \\ [T: \ P] \vdash [T.U == \ T.V] & (AssocCame) \end{array}$

We know $G \vDash T$, must show $G \vDash T.U$ (or $G \vDash T.V$)

Formal substitution on $G_{\mathsf{P}} \vDash \tau_0 . \mathsf{U}$:

- $\vdash \tau_0$ becomes $G \vDash T$
- $\vdash [\tau_0: P]$ becomes $G \vDash [T: P]$
- $\bullet\,$ In all other steps, replace τ_0 with T

We get $G \vDash T.U!$

$$\begin{split} [\texttt{U: P}], \, [\texttt{T} &== \texttt{U}] \vdash [\texttt{T: P}] & (\text{Equiv}) \\ \text{Assume } \varphi(\texttt{U}) \cdot [\texttt{P}] \sim \varphi(\texttt{U}) \text{ and } \varphi(\texttt{T}) \sim \varphi(\texttt{U}). \text{ Then,} \\ & \varphi(\texttt{T}) \cdot [\texttt{P}] \sim \varphi(\texttt{U}) \cdot [\texttt{P}] \sim \varphi(\texttt{U}) \sim \varphi(\texttt{T}) \\ \\ [\texttt{T: P}], \, [\texttt{T} &== \texttt{U}] \vdash [\texttt{T.A} &== \texttt{U.A}] & (\text{Member}) \\ & \varphi(\texttt{T}) \sim \varphi(\texttt{U}) \text{ implies } \varphi(\texttt{T}) \cdot \texttt{A} \sim \varphi(\texttt{U}) \cdot \texttt{A}. \end{split}$$

Set of irreducible type terms $\mathcal{I}(G) \subset A^*$:

$$\{ \text{for all } G \vDash \mathsf{T} \colon \tilde{\varphi}(\mathsf{T}) \} \bigcup_{\{ \text{for all } G_{\mathsf{P}} \vDash \tau_0 . \mathsf{U} \colon \tilde{\varphi}_{\mathsf{P}}(\mathsf{Self}.\mathsf{U}) \} }$$

- $\tilde{\varphi}(T)$: normal form of $\varphi(T)$
- $\tilde{\varphi_{P}}(\texttt{Self.U})$: normal form of $\varphi_{P}(\texttt{Self.U})$

If $\langle A; R \rangle$ is convergent (possibly infinite):

$\langle A; R \rangle$ finite $\Leftrightarrow \mathcal{I}(G)$ finite

No element of $\mathcal{I}(G)$ is a proper suffix of any other: $\tau_i \cdot \mathbf{A}_{i_1} \cdots \mathbf{A}_{i_m} \qquad [\mathbb{Q}] \cdot \mathbf{A}_{j_n} \cdots \mathbf{A}_{j_n}$ • If $t \in \mathcal{I}(G)$ and $t \cdot [\mathbb{P}] \sim t$, then $(t \cdot [\mathbb{P}] \sim t) \in R$. • If $(t \cdot [\mathbb{P}] \sim t) \in R$, then $t \in \mathcal{I}(G)$. If $G \vDash U.A$, $G \vDash [U: P]$ for some P declaring A. Therefore,

$$egin{aligned} arphi(\mathtt{U},\mathtt{A}) &= arphi(\mathtt{U})\cdot\mathtt{A} \ &\sim arphi(\mathtt{U})\cdot[\mathtt{P}]\cdot\mathtt{A} \ &\sim arphi(\mathtt{U})\cdot[\mathtt{P}]\mathtt{A} \end{aligned}$$

Name symbols reduce to associated type symbols: [P]A < A.

Problem 4: Type parameter validity

Assume G is valid. Then $G \models T$ if and only if $\tilde{\varphi}(T)$ does not contain name symbols.

Now, $\tilde{\varphi_{\mathsf{P}}}(\texttt{Self.U})$ might be a *proper suffix* of $\tilde{\varphi}(\mathtt{T})$:

$$\begin{split} \tilde{\varphi}(\mathtt{T}) &= \tau_i \cdot [\mathtt{P}_1] \mathtt{A}_1 \cdots [\mathtt{P}_n] \mathtt{A}_n \\ \tilde{\varphi_{\mathtt{P}}}(\mathtt{Self.U}) &= \begin{cases} [\mathtt{P}] \\ [\mathtt{P}] \mathtt{A}_1 \cdots [\mathtt{P}_n] \mathtt{A}_n \end{cases} \end{split}$$

Problem 3: Name lookup

If t irreducible, then $t \cdot [P] \sim t$ if and only if $t = u \cdot v$ for some $(v \cdot [P] \rightarrow v) \in R$, and $u \in A^*$. We build the property map:

- Record all $(v \cdot [P] \to v)$ in a multi-map with key v.
- Keys stored in suffix trie.
- Given T, check every suffix of $\tilde{\varphi}(T)$.

Theorem

Given a string rewrite system $\langle A; R \rangle$, the full lowering outputs a convergent rewrite system for $G_{\mathbb{M}}$ if and only if $\langle A; R \rangle$ can be extended to a convergent rewrite system over A compatible with shortlex order on A^* .

Completion can fail:

- Bad choice of alphabet
- Reduction order

Some rewrite systems have no convergent presentation over *any* alphabet.