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What is Swift?

Safe, expressive, systems language

@ Open source: swift.org

Apple, Linux, Windows
C/Objective-C/C++ interop
Separately-compiled generic code
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What is Swift?

Safe, expressive, systems language

@ Open source: swift.org

Apple, Linux, Windows
C/Objective-C/C++ interop
Separately-compiled generic code

e Runtime model

e Type checking
o Informal examples
o Formal model
o String rewriting
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Functions

func identity(x: Int) -> Int {
return x

+

func identity(x: String) -> String {
return x

+
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Generic Functions

func identity<T>(x: T) -> T {
return x

by

Slava Pestov (Apple) Protocols and A: > 202s¢ 4 /109



Value Types

struct PairOfInts {
var first: Int
var second: Int

enum IntOrPairOfInts {
case first(Int)
case second(Pair0OfInts)

by
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Generic Value Types

struct Pair<T> {
var first: T
var second: T

enum Either<U, V> {
case first(U)
case second (V)

by
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protocol StreamOfInts {
mutating func next() -> Int

}
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Protocols with Associated Types

protocol Stream {
associatedtype Element
mutating func next() -> Self.Element

}
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Conformance

struct NaturalNumbers: Stream {
var n = 0

mutating func next() -> Int {
n+=1
return n
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Conformance Requirements

<S> ... where S: Stream
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Conformance Requirements

func firstTwo<S>(_ s: inout S) -> Pair<S.Element>
where S: Stream {
return Pair(first: s.next(), second: s.next())

}
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Type Parameters

S.Element
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Same-Type Requirements

protocol Equatable {
static func ==(lhs: Self, rhs: Self)
}

func firstTwoEqual<S1, S$2>(_ sl1: inout S1,
_ s2: inout S2) -> Bool
where S1: Stream,
S2: Stream,
S1.Element: Equatable,
S1.Element == S2.Element {
return sl.next() == s2.next()

}
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Same-Type Requirements

S1.Element == S2.Element
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Generic Signatures

A generic signature G is a list of root type parameters and
requirements.

Requirements

e Conformance: [T: P] for protocol P
e Same-type: [T == U]

(T and U are type parameters)

Type parameters

Recursively:
@ Root: T, for0<i<n

e Member: U.A for type parameter U and associated type name A
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Associated Requirements

(Warning: not the real Collection!)

protocol Collection {
associatedtype Element

var count: Int { get }
subscript(index: Int) -> Self.Element
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Associated Requirements

(Warning: not the real Collection!)

protocol Collection {
associatedtype Element
associatedtype Slice

var count: Int { get }
subscript(index: Int) -> Self.Element
subscript(range: Range<Int>) -> Self.Slice
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Associated Requirements

(Warning: not the real Collection!)

protocol Collection {
associatedtype Element
associatedtype Slice
where Self.Slice: Collection

var count: Int { get }
subscript(index: Int) -> Self.Element
subscript(range: Range<Int>) -> Self.Slice
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Associated Requirements

(Warning: not the real Collection!)

protocol Collection {
associatedtype Element
associatedtype Slice
where Self.Slice: Collection,
Self .Element == Self.Slice.Element

var count: Int { get }
subscript(index: Int) -> Self.Element
subscript(range: Range<Int>) -> Self.Slice
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Requirement Signatures

The requirement signature of protocol P is a list of associated type
names and associated requirements.

Associated requirements

e Conformance: [Self.U: Q]p for protocol Q
e Same-type: [Self.U == Self.V|p
(Self.U and Self.V are relative type parameters)

Relative type parameters

Recursively:
o Root: Self

@ Member: Self.V.A for relative type parameter Self.V and
associated type name A
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Protocol Generic Signature

The generic signature of a protocol P is denoted Gbp:
@ To
) [TOZ P]

Relative type parameters of P are type parameters of Gop:
Self.U < 1).U

Gp is the “simplest non-trivial” generic signature!
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Binary Search Example

// Find index of ‘e: E’ within ‘c: C’.
func binarySearch<C, E>(_ c: C, _ e: E) -> Int
where C: Collection,
E: Comparable,
E == C.Element {
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Binary Search Example

Generic signature of binarySearch():
G := Ty, T1,[To: Collection|,[T;: Comparable],[T; == To.Element]

Requirement signature of Collection:

@ Element

@ Slice

@ [Self.Slice: Collectioncoliection

o [Self.Element == Self.Slice.Element|coliection
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Binary Search Example

// Find index of ‘e: E’ within ‘c: C’.
func binarySearch<C, E>(_ c: C, _ e: E) -> Int
where C: Collection,
E: Comparable,
E == C.Element {
if c.count == 0 { return O }
let mid = c.count / 2
if c[mid] == e {
return mid
} else if c[mid] < e {
return binarySearch(c[0 ..< mid], e)
} else {
return mid + binarySearch(c[mid ..< c.count], e)
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Binary Search Example

Recursive call:

@ binarySearch(c[0 ..< mid], e)
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Binary Search Example

Recursive call:
@ binarySearch(c[0 ..< mid], e)

@ c[0 ..< mid] returns a Tg.Slice
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Binary Search Example

Recursive call:
@ binarySearch(c[0 ..< mid], e)
@ c[0 ..< mid] returns a Tg.Slice

e Substitution: {tp := T19.Slice,T; : =71}
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Binary Search Example

Recursive call:

binarySearch(c[0 ..< mid], e)

c[0 ..< mid] returns a Tg.Slice

Substitution: {ty :=T¢.Slice, 11 := 11}
Is the where clause satisfied?
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Binary Search Example

Recursive call:

binarySearch(c[0 ..< mid], e)

c[0 ..< mid] returns a Tg.Slice

Substitution: {ty :=T¢.Slice, 11 := 11}
Is the where clause satisfied?

o [T;: Comparablel: trivial
o [Tp: Collection] = [Tp.Slice: Collection]
o [T1 == Tg.Element] = [T; == Tg.Slice.Element]
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Theory of a Generic Signature

Are these “consequences” of G7

[Tg.Slice: Collection)]

[T; == T¢.Slice.Element]
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Theory of a Generic Signature

Are these “consequences” of G7

[Tg.Slice: Collection)]

[T; == T¢.Slice.Element]

What about Ty.Slice.Element itself?
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Theory of a Generic Signature

G defines a theory of valid type parameters and derived requirements:
e Elementary derivation steps: F E;

o Inference rules: Dy,...,D, D

A derivation G F D is a (well-formed) sequence of derivation steps.
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Elementary Derivation Steps

e For each root type parameter t; of G:
E (Roor)

e For each explicit conformance requirement [T: P] of G:

F[T: P (Coxr)
e For each explicit same-type requirement [T == U] of G:
= [T == U] (SAME)
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Inference Rules

requirement signature of P

_l_
T: P

more steps
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Inference Rules

For each G F [T: PJ:
e For each associated type A of P:

[T: P|FT.A (Assoc)
e For each [Self.U: QJp:

[T: P|F[T.U: Q] (AssocConr)
e For each [Self.U == Self.V]p of P:

[T: P|F[T.U == T.V] (AssocSaME)
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Formal Substitution

Replacement of Self:
T.U := Self.U/{Self := T}
Concatenation:

T.U:=T+ Self.U
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Inference Rules

Equivalence relation:

GE[T == U
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Inference Rules

e For each GE T:
TH[T == T]

e For each GF [T
[T == U] F[U ==

e For each GF [T

(REFL)

(Swap)

(TrANS)

Slava Pestov (Apple)

Protocols and A:

ciated Types
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Inference Rules

e For each G F [U: P| and GFE [T == U]

[U: P], [T == U] [T: P (Equiv)
e For each G F [T: P], GF [T == U], and each associated type A of P:
[T: P|, [T == Ul F[T.A == U.4] (MEMBER)
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Derived Conformance Example

Recall G F [19.Slice: Collection] from binarySearch():
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Derived Conformance Example

Recall G F [19.Slice: Collection] from binarySearch():

F [to: Collection] (Conr)
[To: Collection|t [Tp.Slice: Collection] (AssocConr)
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Derived Conformance Example

Recall G F [19.Slice: Collection] from binarySearch():

F [to: Collection] (Conr)
[To: Collection|t [Tp.Slice: Collection] (AssocConr)
In fact,

[To.Slice™: Collection] F [1g.Slice™™!: Collection]

(AssocCoNF)
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Recursive Conformance

[Self.Slice: Collection|collection generates an infinite family of
conformance requirements.
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Recursive Conformance

[Self.Slice: Collection|collection generates an infinite family of
conformance requirements.

[Self.U: Q]p is recursive if Gq uses P.
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Recursive Conformance

[Self.Slice: Collection|collection generates an infinite family of
conformance requirements.

[Self.U: Q]p is recursive if Gq uses P.

We just proved:

If G uses a protocol with a recursive associated conformance
requirement, then G generates an infinite theory.
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Derived Same-Type Example

Recall G F [1; == Tp.Slice.Element] from binarySearch():

F[t1 == T¢.Element] (SAME)
[To: Collection]

F [To.Element == T(.Slice.Element] (AssocSaME)
[T1 == To.Element], [Tg.Element == Tp.Slice.Element]

F[t1 == T¢.Slice.Element] (TrANS)
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Derived Same-Type Example

Recall G F [1; == Tp.Slice.Element] from binarySearch():
F[t1 == T¢.Element] (SAME)
[To: Collection]

F [To.Element == T(.Slice.Element] (AssocSaME)
[T1 == To.Element], [Tg.Element == Tp.Slice.Element]

F[t1 == T¢.Slice.Element] (TrANS)
In fact,

[Tp.Slice™: Collection]

F [to.Slice™.Element == Tg.Slice™'!.Element] (AssocSAmE)
[T == Tp.Element], [Tg.Slice” .Element == Tp.Slice"'!.Element]
Flt == TO.Slice”'H.Element] (TrANS)
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Equivalence Classes

Generic signature G of binarySearch():

° {to}
{T1,7Tp.Element,...,Tg.Slice” .Element,...}
{To.Slice}

{T0.Slice"}
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Decision Problems

Two fundamental problems:

Problem 1: Conformance

o Instance: Generic signature G, type parameter T, protocol P.
e Question: Is G F [T: P|?

Problem 2: Equivalence

o Instance: Generic signature G, type parameters T and U.
e Question: Is G F [T == UJ?
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generic signature

4

string rewrite system

Slava Pestov (Apple) rotocols and / 202s¢ 40 /109



The Alphabet

Finite alphabet A for generic signature G:

e T;: for each root type parameter of G.
e A: for each unique associated type name A.

e [P]: for each protocol P used by G.

Random example:

protocol Chicken { associatedtype Egg }
protocol Egg { associatedtype Egg }

A := {70, T1, T2, [Chicken], [Egg],Egg}

Slava Pestov (Apple) Protocols and Associated Types 202s¢ 41 /109



Free Monoids

For any set A:
o A* is the free monoid generated by A.
@ t € A is a finite string, called a term.

@ x -y is concatenation of x and y.

€ is the empty term.
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Free Monoids

For any set A:

o A* is the free monoid generated by A.
@ t € A is a finite string, called a term.
@ x -y is concatenation of x and y.

@ ¢ is the empty term.

v
Definitions

e |t| € N is the length of t.

o Ift=2x-y- 2z then y is a subterm of t.

o If |y| < |t|, then y is a proper subterm.
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Terms

Definition of ¢

Type parameter T maps to a term (T) € A*:

(p(Ti.Al. . -An) =T; A1 ---A,
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Terms

Definition of ¢

Type parameter T maps to a term (T) € A*:

(p(TZ'.Al. . -An) =T; A1 ---A,

Definition of ¢p

| \

Relative type parameter Self.U maps to a term pp(Self.U) € A*:

gDp(Self.Al. o .An) = [P] “Ay---A,
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String Rewrite Systems

(4; R)

o A:={ai,...,a,}: finite alphabet of symbols
o R:={(u1 ~v1),..., (um ~ vy)}: finite set of rewrite rules

o ~: the term equivalence relation on A* generated by R.
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Term Equivalence Relation

R defines an equivalence relation ~ on A*:
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Term Equivalence Relation

R defines an equivalence relation ~ on A*:
o If (u~wv) € R, then u ~ v.
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Term Equivalence Relation

R defines an equivalence relation ~ on A*:
o If (u~wv) € R, then u ~ v.

o Ifxr~yand w,z€ A* thenw-z-z2~w-y- 2.
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Term Equivalence Relation

R defines an equivalence relation ~ on A*:
o If (u~wv) € R, then u ~ v.
o Ifxr~yand w,z€ A* thenw-z-z2~w-y- 2.
o If x € A* then = ~ x.
o If x ~y, then y ~ x.

o Ifx~yandy~ 2z, then x ~ z.
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Term Equivalence Relation

R defines an equivalence relation ~ on A*:
o If (u~wv) € R, then u ~ v.
o Ifxr~yand w,z€ A* thenw-z-z2~w-y- 2.
o If x € A* then = ~ x.
o If x ~y, then y ~ x.

o Ifx~yandy~ 2z, then x ~ z.

The derivations of this theory are called rewrite paths.
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Rewrite Rules

Generic requirement D maps to a rule A(D) € A* x A*:

A([T: P]) = (p(T) -
A([T == U]) := (#(T) ~ ¢(V))
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Rewrite Rules

Generic requirement D maps to a rule A(D) € A* x A*:

A\

Definition of Ap
Associated requirement D in protocol P maps to a rule
Ap(D) € A* x A*:

Ap([Self.U: Qlp) := (¢p(Self.U) - [Q] ~ ¢p(Self.U))
Ap([Self.U == Self.V]p) := (pp(Self.U) ~ ¢p(Self.V))

\
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Rewrite system for generic signature G of binarySearch():
@ (70 - [Collection] ~ 1)
@ (710 -Element ~ T1)
@ (11 - [Comparable| ~ T1)

47 /109
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Rewrite system for generic signature G of binarySearch():
@ (70 - [Collection] ~ 1)
@ (7o -Element ~ 1)

Ty - [Comparable] ~ 1)

[
[

Collection|-Slice - [Collection| ~ [Collection]-Slice)

o~ o~ o~ o~

o
o
@ ([Collection]-Slice-Element ~ [Collection] Element)
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Main Theorem

Assume G is valid, G E T, G E U. Then,
e GF[T: P]if and only if ¢(T) - [P] ~ ¢(T).

e GF [T == U] if and only if »(T) ~ (V).
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Main Theorem

Assume G is valid, G E T, G E U. Then,
e GF[T: P]if and only if ¢(T) - [P] ~ ¢(T).

e GF [T == U] if and only if »(T) ~ (V).

(=) Proof by structural induction on derivations:

o Elementary derivation step: property holds by construction.

e For each inference rule, assume property holds for all assumptions,
show it holds for consequence.
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Derived Conformance Example

To show A([tp.Slice: Collection]):

Tp - Slice - [Collection| ~ T¢ - [Collection] - Slice - [Collection]
~ Ty - [Collection] - Slice

~ Tp - Slice
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Term Concatenation

T + Self.U = T.U
Y U \
@(T) - pp(Self.U) # ¢(T.U)
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Term Concatenation

T + Self.U = T.U
Y U \
@(T) - ¢p(Self.U) # ¢(T.U)

But if ¢(T) - [P] ~ ¢(T), then ¢(T) - ¢p(Self.U) ~ ¢(T.U):
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Term Concatenation

T + Self.U =

T.U
Y U \
@(T) - ¢p(Self.U) # ¢(T.U)

But if ¢(T) - [P] ~ ¢(T), then ¢(T) - ¢p(Self.U) ~ ¢(T.U):

©(T) - pp(Self.U) ~ p(T.U)
t [P] t-
Because

t-[Plrun~t-u
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Sketch of Proof

[T: P]F[T.U: Q] (AssocCoONF)
Assume ¢(T) - [P] ~ ¢(T) and show ¢(T.U) - [Q] ~ ¢(T.U):

©(T.U) - [q]

~ ¢(T) - ¢p(Self.U) - [q]
~ ¢(T) - pp(Self.U)

~ ¢(T.U)
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Derived Same-Type Example

To show A([T1 == T¢.Slice.Element]):

Tp - Slice - Element ~ T - [Collection] - Slice - Element
~ Tp - [Collection| - Element
~ Tg - Element

N"[’l
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Sketch of Proof

[T: P|F[T.U == T.V] (AssocSAME)
Assume ¢(T) - [P] ~ ¢(T) and show ¢(T.U) ~ ¢(T.V):

¢(T.U)

~ ¢(T) - pp(Self.U)
~ ¢(T) - pp(Self.V)
~ ¢(T.V)
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The Ultimate Problem

We’ve reduced everything to...

The word problem

o Instance: String rewrite system (A; R), terms z, y € A*.

@ Question: Is x ~ y?
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duction Relation

R defines a reduction relation — on A*:
o If (u—v) € R, then u — v.
oelfr—wyandw,z€ A*, thenw-z-z2 > w-y-z.
o If x € A* then x — .
o If r >y and y — z, then x — 2.

(Exactly like ~ but not symmetric!)
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Normal Form Algorithm

Outputs the normal form t of t:

o If t = zuz for some (u — v) € R, set t to vz and continue.
e Otherwise, output t.
If t = ¢, then t is irreducible.
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Normal Form Algorithm

Algorithm

Outputs the normal form t of t:

o If t = zuz for some (u — v) € R, set t to vz and continue.
e Otherwise, output t.
If t = ¢, then t is irreducible.

v,
Properties

o If ¢ exists, then ¢ ~ t.

o If & =g, then z ~ y.
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Problems

(a;a — aa)

Normal form of a does not exist:

a — aa — aaa — aaaq —; - - -
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Problems

(a;a — aa)

Normal form of a does not exist:

a — aa — aaa — aaaq —; - - -

Uniqueness

| \

(a,b,c;ab — a,bc — b)

ac and a are irreducible but also ac ~ a:

abc — ab — a

abc — ac
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Termination

— is Noetherian if normal form algorithm terminates.
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Termination

Definition

— is Noetherian if normal form algorithm terminates.

A reduction order on A* satisfies:

o Ifu>wv,thenz-u-z>zx-v-z

e No infinite descending chains: ©1 > g > -+ >z, > - -

If each (v — v) € R is oriented so that u < v, then — is Noetherian.

Proof: If t - t; =ty — ---, then t > t; >ty > --- (property 1).
Therefore t = t,, for some n (property 2).
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Confluence

— is confluent whenever x — y and © — z, there exists w such that
y — w and z — w.

(a,b,c;ab — a,bc — b,ac — a)

Adding (ac — a) does not change ~ but makes — confluent. This is
called completion.
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Convergence

Definition

(A; R) is a convergent rewrite system if — is Noetherian and confluent.

Church-Rosser Theorem

Assume (A; R) convergent. Then x ~ y if and only if z = y.
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Completion

If t —» ¢ and t — tg, (t1,t2) is a critical pair.
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Completion

If t —» ¢ and t — tg, (t1,t2) is a critical pair.

Newman’s Lemma

Assume — is Noetherian. Left-hand sides of rewrite rules generate a
finite set of critical pairs.
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Knuth-Bendix Completion 1/4

Algorithm

Resolving critical pair (¢1,t2):

o t; = t1, to — to.

o If {7 = ty: critical pair is trivial.
If t; > to: add (t; — t2) to R.
If t; < to: add (tz — t1) to R.
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Knuth-Bendix Completion 2/4

u-v-w

Overlap of the first kind

If (u-v-w—z), (v—y) €R,
e Delete (u-v-w — x).

@ Resolve (u-y-w,x).
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Knuth-Bendix Completion 3/

Overlap of the second kind

If (u-v—2x), (v -w—y) €R,

e Resolve (z - w,u-y).

Slava Pestov (Apple) Protocols and Associated Types 202s¢ 64 /109



Knuth-Bendix Completion 4

For all (v — v) € R where v # 7,
e Replace (u — v) with (u — 0).
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Knuth-Bendix completion might not terminate!
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Knuth-Bendix completion might not terminate!

Question

What just defined the basic lowering. Does the basic lowering accept
all generic signatures?
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Finite Cross-Section

G has a finite cross-section if set of equivalence classes is finite.

finite theory C finite cross-section
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Finite Cross-Section

G has a finite cross-section if set of equivalence classes is finite.

finite theory C finite cross-section

protocol Z2 {

associatedtype A where Self.A: Z2, Self.A.A == Self
b

G'zo has an infinite theory: Tg, Tg.A, To-A.A, Tg.A.A.A, ...
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Finite Cross-Section

G has a finite cross-section if set of equivalence classes is finite.

finite theory C finite cross-section

protocol Z2 {

associatedtype A where Self.A: Z2, Self.A.A == Self
b

G'zo has an infinite theory: Tg, Tg.A, To-A.A, Tg.A.A.A, ...

(75 has a finite cross-section:

Representative: General form:

To To A%
To-A To .A2n+1
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The Basic Lowering

(A; R) is basic lowering of G. Completion terminates if and only if:

@ (G has a finite cross-section.

e For each protocol P used by GG, Gp has a finite cross-section.
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Infinite Example

Goollection does not have a finite cross-section. Let’s remove
everything but the recursive “slice” type:

protocol N {
associatedtype A: N

}

Rewrite rules:
o ([N]-A-[N] — [N]-A)

o (To- [N] = 7o)
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Overlapping Rules
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Overlapping Rules

TO'A-[N]
M)A
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Overlapping Rules

TO'A-[N]
M)A

(To - [N] — o)
(To-A-[N] — Tp - A)
(To-A-A-N] > T1p-A-A)
(To-A-A-A-[N] = Ty-A-A-A)
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Full Lowering

[P]-A— [PJA
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Associated Type Symbols

For each associated type A of each protocol [P],
o A:=AU{[P]A}
e R:=RU{([P]-A— [P]A)}

Reduction order: [P] < [PJA < A < T;

o

Adding a new symbol a and rewrite rule (¢ — a) does not change the

term equivalence relation ~.

A\,

Slava Pestov (Apple) Protocols and Associated Types
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Infinite Example, Revisited

protocol N {
associatedtype A: N

}

Rewrite rules:
e ([N]-A — [NJA)—new!
o ([N]-A-[N] —[N]-A)
) (To . [N] — TQ)

Slava Pestov (Apple)

Protocols and iated Types
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New Overlapping Rules
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New Overlapping Rules
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New Overlapping Rules




New Overlapping Rules




We have a convergent rewrite system!

Conformance rules:
o (M)A~ [ — [N]a)
o (To'[N]—% To)
Name reduction rules:
o (IN] - & — [N]A)
o ([NJA-A — [N]A- [N]A)
) (To A —T1H- [N]A)

Slava Pestov (Apple)
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Normal Form Example

Gy E [t9.A.A.A: N]. Therefore, To-A-A-A-[N]~To-A-A-A:
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Normal Form Example

Gy E [t9.A.A.A: N]. Therefore, To-A-A-A-[N]~To-A-A-A:

To-A-A-A—To-[NJA-A-A
— T - [NJA-[N]A- A
— To - [NJA - [N]A - [N]A
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Normal Form Example

Gy E [t9.A.A.A: N]. Therefore, To-A-A-A-[N]~To-A-A-A:

To-A-A-A—To-[NJA-A-A
— T - [NJA-[N]A- A
— T - [NJA- [

Other side:

To-A-A-A-[N] = 1o [NJA- [N]JA- [N]A - [N]
— To - [N]JA - [N]A - [N]A
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Full Lowering

Full lowering accepts:
o All generic signatures with finite cross-section.

@ Some generic signatures with infinite cross-section: Gy,
CYYCollectiony many more.

Does the full lowering accept all generic signatures?
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string rewrite system

4

generic signature
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Encoding a Rewrite System

Example:
M :={(a,b,c;ab ~ a,bc ~ b)

protocol M {

Slava Pestov (Apple) Protocols and A.
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Encoding a Rewrite System

Example:
M :={(a,b,c;ab ~ a,bc ~ b)

protocol M {
associatedtype A
associatedtype B
associatedtype C

Slava Pestov (Apple) Protocols and A.
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Encoding a Rewrite System

Example:
M :={(a,b,c;ab ~ a,bc ~ b)

protocol M {
associatedtype A: M
associatedtype B: M
associatedtype C: M

Slava Pestov (Apple) Protocols and A.

84 /109



Encoding a Rewrite System

Example:
M :={(a,b,c;ab ~ a,bc ~ b)

protocol M {
associatedtype A: M
associatedtype B: M
associatedtype C: M
where A.B == A, B.C ==

Slava Pestov (Apple) Protocols anc iated Types
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Solving Word Problems

We have ac ~ a but ca ¢ b:

func wordProblems<T: M>(_: T.Type) {
sameType(T.A.C.self, T.A.self) // okay

sameType(T.C.A.self, T.B.self) // type error
}

func sameType<T>(_: T.Type, _: T.Type) {}
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Understanding the Encoding

G encodes the word problem in (A; R):
o t € A* if and only if Gy F T.
o u ~v if and only if Gy F [U == V].
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Understanding the Encoding

G encodes the word problem in (A; R):
o t € A* if and only if Gy F T.
o u ~v if and only if Gy F [U == V].

(4; R)
%
Gy

U
(A, R)
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Undecidability

Historical sketch:
e Thue (1914): word problem
e Godel (1931): incompleteness
e Turing (1936): effective computability
e Post (1945): word problem is undecidable
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Undecidability

Historical sketch:
e Thue (1914): word problem
Godel (1931): incompleteness
Turing (1936): effective computability
Post (1945): word problem is undecidable

Theorem

(Tseitin, 1956) Undecidable if a given term t is equivalent to aaa:

(a,b,c,d,e;ac ~ ca,ad ~ da,bc ~ cb,bd ~ db,eca ~ ce,

cdea ~ cdcae, caaa ~ aaa, daaa ~ aaa)
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Undecidable Example

// error: cannot build rewrite system for protocol;
// rule length limit exceeded

protocol M {
associatedtype A
associatedtype B
associatedtype C:
associatedtype D
associatedtype E

EPREEER

o Instance: Type parameter T.

o Question: Is Gy F [T == Tp.A.A.A]?
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Conclusion

e Formal theory of associated requirements.
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Conclusion

Formal theory of associated requirements.

o Generic signature = string rewrite system.

Derived requirements = word problem.
e Knuth-Bendix solves word problem if successful.

e finite theory C finite cross-section C all generic signatures

Accept all finite cross-section, and some infinite cross-section.
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Conclusion

Formal theory of associated requirements.

o Generic signature = string rewrite system.

Derived requirements = word problem.
e Knuth-Bendix solves word problem if successful.

e finite theory C finite cross-section C all generic signatures

Accept all finite cross-section, and some infinite cross-section.

@ No decision procedure can accept all generic signatures.

90 /109



Ten Years of Swift Generics

Separately-compiled generics (2013)
e Standard library collections (2015)
e Recursive conformances (2017)

e Undecidability (2020)

e Requirement Machine (2022)
Formal model (2023)
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Additional Resources

o Reference guide, Compiling Swift Generics:
download.swift.org/docs/assets/generics.pdf

@ Recorded talk, Implementing Swift Generics:
www.youtube.com/watch?v=ctS8FzqcRug
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Thank You!
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Calling Convention Supplement

func identity<T>(x: T) -> T {
return x

+

Calling convention of identity():
e Pointer to type metadata for T
e Pointer to argument of type T

e Pointer to return buffer for value of type T

Slava Pestov (Apple)
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Calling Convention Supplement

Type metadata:
@ size
e alignment
o destroy value when it leaves scope
e copy value if use extends lifetime
e move value if this is final use
Implementations:
e Trivial types (Int, etc): bitwise copy
o Reference types: copy +1, destroy -1

e Generic structs and enums (Either<U, V>, etc):

o Instantiation function
e Compute size and alignment from U and V
e Generic move, copy, destroy operations
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Calling Convention Supplement

func firstTwo<S>(_ s: inout S) -> Pair<S.Element>
where S: Stream
Calling convention of firstTwo():
e Pointer to type metadata for S
e Pointer to witness table for [S: Stream]
Witness table layout of [S: Stream|:
e Type metadata for Element

o Concrete implementation of next ()

Slava Pestov (Apple)
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Decision Problems Supplement

Problem 3: Name lookup

e Instance: Generic signature G, type parameter T.
e Question: All protocols P such that G = [T: P|?

Type checking “foo.bar” where foo is a T:
e Some P where G E [T: P] must declare a member named bar.

@ Reduces to Problem 1.
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Decision Problems Supplement

Problem 4: Type parameter validity

e Instance: Generic signature G, type parameter T.
@ Question: Is G E T?

Reduces to Problem 3:
e T; validity: immediate.
o U.A: valid iff exists P declaring A such that G F [U: PJ.
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Decision Problems Supplement

Problem 5: Generic signature validity

o Instance: Generic signature G.
@ Question: Is G valid?

Generic signature of binarySearch():

G := 19, T1, {Fo+—Cotteetion}, [T;: Comparable],[T; == T¢.Element]

Now, G F [11 == T¢.Element] but G ¥ 1p.Element!
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Valid Generic Signatures Suppment

Valid generic requirements
o [T: Plisvalidif GET.
o [T == U]isvalid if GF T and G FU.

Valid associated requirements
@ [Self.U: QJp is valid if Gp F 1. U.
@ [Self.U == Self.V]pis valid if Gp F 19.U and Gp F 1. V.

Assume all explicitly-written requirements of GG are valid. Then all
derived requirements of G are valid.

Slava Pestov (Apple) Protocols and Associated Types
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Validity Proof Supplement

@ Base case - E;: E; is known valid.
e Inductive step D1,...,D, = D: show D is valid if all D, are.
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Validity Proof Supplement

Interesting cases:

[T: P]F[T.U: Q] (AssocCONF)
[T: P]F[T.U == T.V] (AssocSAME)

We know G F T, must show G FT.U (or G E T.V)

Formal substitution on Gp F 1¢.U:

e F 1y becomes G E T

o [to: P] becomes G F [T: P]

o In all other steps, replace 19 with T
We get G ET.U!

Slava Pestov (Apple) Protocols and iated Types 202s¢ 103 /109



Term Equivalence Proof Supplement

[U: P|, [T == U]+ [T: P] (Equiv)

Assume ¢(U) - [P] ~ ¢(U) and ¢(T) ~ ¢(U). Then,

[T: P|, [T == U] [T.A == U.A| (MEMBER )

o (T) ~ (V) implies p(T) - A ~ (V) - .
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Finiteness Proof Supplement

Set of irreducible type terms Z(G) C A*:

{for all GET: ¢(T)}

U

{for all Gp F 19.U: $p(Self.U)}

e ¢(T): normal form of ¢(T)
@ ¥p(Self.U): normal form of pp(Self.U)

If (A; R) is convergent (possibly infinite):

(A; R) finite < Z(G) finite
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Finiteness Proof Supplement

No element of Z(G) is a proper suffix of any other:
T Aj oo hy, QA Ay,

o If t€ Z(G) and t - [P] ~ ¢, then (¢ -[P] ~ t) € R.
o If (t-[P] ~t) € R, then t € Z(G).
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Valid Type Parameters Supplement

If GFU.A, GF[U: P] for some P declaring A. Therefore,

¢(U.4) = ¢(U) - A

Name symbols reduce to associated type symbols: [P]A < A.

Problem 4: Type parameter validity

Assume G is valid. Then G F T if and only if ¢(T) does not contain
name symbols.
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Full Lowering Supplement

Now, ¢p(Self.U) might be a proper suffix of @(T):

Problem 3: Name lookup

If ¢ irreducible, then ¢ - [P] ~ ¢ if and only if ¢ = u - v for some
(v-[P] = v) € R, and u € A*. We build the property map:

e Record all (v - [P] = v) in a multi-map with key v.

o Keys stored in suffix trie.

e Given T, check every suffix of ¢(T).
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Full Lowering Supplement

Given a string rewrite system (A; R), the full lowering outputs a
convergent rewrite system for Gy if and only if (A; R) can be
extended to a convergent rewrite system over A compatible with
shortlex order on A*.

Completion can fail:
e Bad choice of alphabet
o Reduction order

Some rewrite systems have no convergent presentation over any
alphabet.
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