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What is Swift?

Safe, expressive, systems language

Open source: swift.org

Apple, Linux, Windows
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Functions

func identity(x: Int) -> Int {

return x

}

func identity(x: String) -> String {

return x

}
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Generic Functions

func identity<T>(x: T) -> T {

return x

}
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Value Types

struct PairOfInts {

var first: Int

var second: Int

}

enum IntOrPairOfInts {

case first(Int)

case second(PairOfInts)

}
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Generic Value Types

struct Pair<T> {

var first: T

var second: T

}

enum Either<U, V> {

case first(U)

case second(V)

}
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Protocols

protocol StreamOfInts {

mutating func next() -> Int

}
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Protocols with Associated Types

protocol Stream {

associatedtype Element

mutating func next() -> Self.Element

}
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Conformance

struct NaturalNumbers: Stream {

var n = 0

mutating func next() -> Int {

n += 1

return n

}

}
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Conformance Requirements

<S> ... where S: Stream
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Conformance Requirements

func firstTwo<S>(_ s: inout S) -> Pair<S.Element>

where S: Stream {

return Pair(first: s.next(), second: s.next())

}
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Type Parameters

S.Element
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Same-Type Requirements

protocol Equatable {

static func ==(lhs: Self, rhs: Self)

}

func firstTwoEqual<S1, S2>(_ s1: inout S1,

_ s2: inout S2) -> Bool

where S1: Stream,

S2: Stream,

S1.Element: Equatable,

S1.Element == S2.Element {

return s1.next() == s2.next()

}
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Same-Type Requirements

S1.Element == S2.Element

Slava Pestov (Apple) Protocols and Associated Types 2023 14 / 109



Generic Signatures

A generic signature G is a list of root type parameters and
requirements.

Requirements

Conformance: [T: P] for protocol P

Same-type: [T == U]

(T and U are type parameters)

Type parameters

Recursively:

Root: τi for 0 ≤ i < n

Member: U.A for type parameter U and associated type name A
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Associated Requirements

(Warning: not the real Collection!)

protocol Collection {

associatedtype Element

var count: Int { get }

subscript(index: Int) -> Self.Element

}
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Associated Requirements

(Warning: not the real Collection!)

protocol Collection {

associatedtype Element

associatedtype Slice

var count: Int { get }

subscript(index: Int) -> Self.Element

subscript(range: Range<Int>) -> Self.Slice

}
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Associated Requirements

(Warning: not the real Collection!)

protocol Collection {

associatedtype Element

associatedtype Slice

where Self.Slice: Collection

var count: Int { get }

subscript(index: Int) -> Self.Element

subscript(range: Range<Int>) -> Self.Slice

}

Slava Pestov (Apple) Protocols and Associated Types 2023 18 / 109



Associated Requirements

(Warning: not the real Collection!)

protocol Collection {

associatedtype Element

associatedtype Slice

where Self.Slice: Collection,

Self.Element == Self.Slice.Element

var count: Int { get }

subscript(index: Int) -> Self.Element

subscript(range: Range<Int>) -> Self.Slice

}
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Requirement Signatures

The requirement signature of protocol P is a list of associated type
names and associated requirements.

Associated requirements

Conformance: [Self.U: Q]P for protocol Q

Same-type: [Self.U == Self.V]P

(Self.U and Self.V are relative type parameters)

Relative type parameters

Recursively:

Root: Self

Member: Self.V.A for relative type parameter Self.V and
associated type name A
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Protocol Generic Signature

The generic signature of a protocol P is denoted GP:

τ0

[τ0: P]

Relative type parameters of P are type parameters of GP:

Self.U ⇔ τ0.U

GP is the “simplest non-trivial” generic signature!
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Binary Search Example

// Find index of ‘e: E’ within ‘c: C’.

func binarySearch<C, E>(_ c: C, _ e: E) -> Int

where C: Collection,

E: Comparable,

E == C.Element {

}

Slava Pestov (Apple) Protocols and Associated Types 2023 22 / 109



Binary Search Example

Generic signature of binarySearch():

G := τ0, τ1, [τ0: Collection], [τ1: Comparable], [τ1 == τ0.Element]

Requirement signature of Collection:

Element

Slice

[Self.Slice: Collection]Collection

[Self.Element == Self.Slice.Element]Collection

Slava Pestov (Apple) Protocols and Associated Types 2023 23 / 109



Binary Search Example

// Find index of ‘e: E’ within ‘c: C’.

func binarySearch<C, E>(_ c: C, _ e: E) -> Int

where C: Collection,

E: Comparable,

E == C.Element {

if c.count == 0 { return 0 }

let mid = c.count / 2

if c[mid] == e {

return mid

} else if c[mid] < e {

return binarySearch(c[0 ..< mid], e)

} else {

return mid + binarySearch(c[mid ..< c.count], e)

)

}
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Binary Search Example

Recursive call:

binarySearch(c[0 ..< mid], e)

c[0 ..< mid] returns a τ0.Slice

Substitution: {τ0 := τ0.Slice, τ1 := τ1}
Is the where clause satisfied?

[τ1: Comparable]: trivial
[τ0: Collection] ⇒ [τ0.Slice: Collection]
[τ1 == τ0.Element] ⇒ [τ1 == τ0.Slice.Element]
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Theory of a Generic Signature

Are these “consequences” of G?

[τ0.Slice: Collection]

[τ1 == τ0.Slice.Element]

What about τ0.Slice.Element itself?
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Theory of a Generic Signature

G defines a theory of valid type parameters and derived requirements:

Elementary derivation steps: ⊢ Ei

Inference rules: D1, . . . , Dn ⊢ D

Definition

A derivation G ⊨ D is a (well-formed) sequence of derivation steps.
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Elementary Derivation Steps

For each root type parameter τi of G:

⊢ τi (Root)

For each explicit conformance requirement [T: P] of G:

⊢ [T: P] (Conf)

For each explicit same-type requirement [T == U] of G:

⊢ [T == U] (Same)
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Inference Rules

requirement signature of P
+

[T: P]
=

more steps
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Inference Rules

For each G ⊨ [T: P]:

For each associated type A of P:

[T: P] ⊢ T.A (Assoc)

For each [Self.U: Q]P:

[T: P] ⊢ [T.U: Q] (AssocConf)

For each [Self.U == Self.V]P of P:

[T: P] ⊢ [T.U == T.V] (AssocSame)
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Formal Substitution

Replacement of Self:

T.U := Self.U/{Self := T}

Concatenation:

T.U := T+ Self.U
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Inference Rules

Equivalence relation:
G ⊨ [T == U]
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Inference Rules

For each G ⊨ T:

T ⊢ [T == T] (Refl)

For each G ⊨ [T == U]:

[T == U] ⊢ [U == T] (Swap)

For each G ⊨ [T == U] and G ⊨ [U == V]:

[T == U], [U == V] ⊢ [T == V] (Trans)
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Inference Rules

For each G ⊨ [U: P] and G ⊨ [T == U]:

[U: P], [T == U] ⊢ [T: P] (Equiv)

For each G ⊨ [T: P], G ⊨ [T == U], and each associated type A of P:

[T: P], [T == U] ⊢ [T.A == U.A] (Member)
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Derived Conformance Example

Recall G ⊨ [τ0.Slice: Collection] from binarySearch():

⊢ [τ0: Collection] (Conf)

[τ0: Collection] ⊢ [τ0.Slice: Collection] (AssocConf)

In fact,

[τ0.Slice
n: Collection] ⊢ [τ0.Slice

n+1: Collection]
(AssocConf)
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Recursive Conformance

[Self.Slice: Collection]Collection generates an infinite family of
conformance requirements.

Definition

[Self.U: Q]P is recursive if GQ uses P.

We just proved:

Theorem

If G uses a protocol with a recursive associated conformance
requirement, then G generates an infinite theory.

Slava Pestov (Apple) Protocols and Associated Types 2023 36 / 109



Recursive Conformance

[Self.Slice: Collection]Collection generates an infinite family of
conformance requirements.

Definition

[Self.U: Q]P is recursive if GQ uses P.

We just proved:

Theorem

If G uses a protocol with a recursive associated conformance
requirement, then G generates an infinite theory.

Slava Pestov (Apple) Protocols and Associated Types 2023 36 / 109



Recursive Conformance

[Self.Slice: Collection]Collection generates an infinite family of
conformance requirements.

Definition

[Self.U: Q]P is recursive if GQ uses P.

We just proved:

Theorem

If G uses a protocol with a recursive associated conformance
requirement, then G generates an infinite theory.

Slava Pestov (Apple) Protocols and Associated Types 2023 36 / 109



Derived Same-Type Example

Recall G ⊨ [τ1 == τ0.Slice.Element] from binarySearch():

⊢ [τ1 == τ0.Element] (Same)

[τ0: Collection]

⊢ [τ0.Element == τ0.Slice.Element] (AssocSame)

[τ1 == τ0.Element], [τ0.Element == τ0.Slice.Element]

⊢ [τ1 == τ0.Slice.Element] (Trans)

In fact,

[τ0.Slice
n: Collection]

⊢ [τ0.Slice
n.Element == τ0.Slice

n+1.Element] (AssocSame)

[τ1 == τ0.Element], [τ0.Slice
n.Element == τ0.Slice

n+1.Element]

⊢ [τ1 == τ0.Slice
n+1.Element] (Trans)
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Equivalence Classes

Generic signature G of binarySearch():

{τ0}
{τ1, τ0.Element, . . . , τ0.Slicen.Element, . . .}
{τ0.Slice}
. . .

{τ0.Slicen}
. . .
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Decision Problems

Two fundamental problems:

Problem 1: Conformance

Instance: Generic signature G, type parameter T, protocol P.

Question: Is G ⊨ [T: P]?

Problem 2: Equivalence

Instance: Generic signature G, type parameters T and U.

Question: Is G ⊨ [T == U]?
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generic signature
⇓

string rewrite system
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The Alphabet

Definition

Finite alphabet A for generic signature G:

τi: for each root type parameter of G.

A: for each unique associated type name A.

[P]: for each protocol P used by G.

Random example:

protocol Chicken { associatedtype Egg }

protocol Egg { associatedtype Egg }

A := {τ0, τ1, τ2, [Chicken], [Egg], Egg}
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Free Monoids

Definition

For any set A:

A∗ is the free monoid generated by A.

t ∈ A∗ is a finite string, called a term.

x · y is concatenation of x and y.

ε is the empty term.

Definitions

|t| ∈ N is the length of t.

If t = x · y · z, then y is a subterm of t.

If |y| < |t|, then y is a proper subterm.
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Terms

Definition of φ

Type parameter T maps to a term φ(T) ∈ A∗:

φ(τi.A1...An) := τi · A1 · · · An

Definition of φP

Relative type parameter Self.U maps to a term φP(Self.U) ∈ A∗:

φP(Self.A1...An) := [P] · A1 · · · An
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String Rewrite Systems

⟨A; R⟩
A := {a1, . . . , an}: finite alphabet of symbols

R := {(u1 ∼ v1), . . . , (um ∼ vm)}: finite set of rewrite rules

∼: the term equivalence relation on A∗ generated by R.
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Term Equivalence Relation

R defines an equivalence relation ∼ on A∗:

If (u ∼ v) ∈ R, then u ∼ v.

If x ∼ y and w, z ∈ A∗, then w · x · z ∼ w · y · z.
If x ∈ A∗, then x ∼ x.

If x ∼ y, then y ∼ x.

If x ∼ y and y ∼ z, then x ∼ z.

The derivations of this theory are called rewrite paths.
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Rewrite Rules

Definition of λ

Generic requirement D maps to a rule λ(D) ∈ A∗ ×A∗:

λ([T: P]) := (φ(T) · [P] ∼ φ(T))

λ([T == U]) := (φ(T) ∼ φ(U))

Definition of λP

Associated requirement D in protocol P maps to a rule
λP(D) ∈ A∗ ×A∗:

λP([Self.U: Q]P) := (φP(Self.U) · [Q] ∼ φP(Self.U))

λP([Self.U == Self.V]P) := (φP(Self.U) ∼ φP(Self.V))
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Example

Rewrite system for generic signature G of binarySearch():

1 (τ0 · [Collection] ∼ τ0)

2 (τ0 · Element ∼ τ1)

3 (τ1 · [Comparable] ∼ τ1)

4 ([Collection] · Slice · [Collection] ∼ [Collection] · Slice)
5 ([Collection] · Slice · Element ∼ [Collection] · Element)
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Main Theorem

Theorem

Assume G is valid, G ⊨ T, G ⊨ U. Then,

G ⊨ [T: P] if and only if φ(T) · [P] ∼ φ(T).

G ⊨ [T == U] if and only if φ(T) ∼ φ(U).

(⇒) Proof by structural induction on derivations:

Elementary derivation step: property holds by construction.

For each inference rule, assume property holds for all assumptions,
show it holds for consequence.
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Derived Conformance Example

To show λ([τ0.Slice: Collection]):

τ0 · Slice · [Collection] ∼ τ0 · [Collection] · Slice · [Collection]
∼ τ0 · [Collection] · Slice
∼ τ0 · Slice
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Term Concatenation

T + Self.U = T.U

⇓ ⇓ ⇓
φ(T) · φP(Self.U) ̸= φ(T.U)

But if φ(T) · [P] ∼ φ(T), then φ(T) · φP(Self.U) ∼ φ(T.U):

φ(T)︸︷︷︸
t

·φP(Self.U)︸ ︷︷ ︸
[P]·u

∼ φ(T.U)︸ ︷︷ ︸
t·u

Because
t · [P] · u ∼ t · u
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φ(T)︸︷︷︸
t

·φP(Self.U)︸ ︷︷ ︸
[P]·u

∼ φ(T.U)︸ ︷︷ ︸
t·u

Because
t · [P] · u ∼ t · u
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Sketch of Proof

[T: P] ⊢ [T.U: Q] (AssocConf)

Assume φ(T) · [P] ∼ φ(T) and show φ(T.U) · [Q] ∼ φ(T.U):

φ(T.U) · [Q]
∼ φ(T) · φP(Self.U) · [Q]
∼ φ(T) · φP(Self.U)

∼ φ(T.U)
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Derived Same-Type Example

To show λ([τ1 == τ0.Slice.Element]):

τ0 · Slice · Element ∼ τ0 · [Collection] · Slice · Element
∼ τ0 · [Collection] · Element
∼ τ0 · Element
∼ τ1
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Sketch of Proof

[T: P] ⊢ [T.U == T.V] (AssocSame)

Assume φ(T) · [P] ∼ φ(T) and show φ(T.U) ∼ φ(T.V):

φ(T.U)

∼ φ(T) · φP(Self.U)

∼ φ(T) · φP(Self.V)

∼ φ(T.V)
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The Ultimate Problem

We’ve reduced everything to...

The word problem

Instance: String rewrite system ⟨A; R⟩, terms x, y ∈ A∗.

Question: Is x ∼ y?
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Reduction Relation

R defines a reduction relation → on A∗:

If (u → v) ∈ R, then u → v.

If x → y and w, z ∈ A∗, then w · x · z → w · y · z.
If x ∈ A∗, then x → x.

If x → y and y → z, then x → z.

(Exactly like ∼ but not symmetric!)
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Normal Form Algorithm

Algorithm

Outputs the normal form t̃ of t:

If t = xuz for some (u → v) ∈ R, set t to xvz and continue.

Otherwise, output t.

If t = t̃, then t is irreducible.

Properties

If t̃ exists, then t ∼ t̃.

If x̃ = ỹ, then x ∼ y.
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Problems

Existence

⟨a; a → aa⟩

Normal form of a does not exist:

a → aa → aaa → aaaa → · · ·

Uniqueness

⟨a, b, c; ab → a, bc → b⟩

ac and a are irreducible but also ac ∼ a:

abc → ab → a

abc → ac
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Termination

Definition

→ is Noetherian if normal form algorithm terminates.

Definition

A reduction order on A∗ satisfies:

If u > v, then x · u · z > x · v · z
No infinite descending chains: x1 > x2 > · · · > xn > · · ·

Theorem

If each (u → v) ∈ R is oriented so that u < v, then → is Noetherian.

Proof: If t → t1 → t2 → · · · , then t > t1 > t2 > · · · (property 1).
Therefore t̃ = tn for some n (property 2).
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Confluence

Definition

→ is confluent whenever x → y and x → z, there exists w such that
y → w and z → w.

Example

⟨a, b, c; ab → a, bc → b, ac → a⟩

Adding (ac → a) does not change ∼ but makes → confluent. This is
called completion.
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Convergence

Definition

⟨A; R⟩ is a convergent rewrite system if → is Noetherian and confluent.

Church-Rosser Theorem

Assume ⟨A; R⟩ convergent. Then x ∼ y if and only if x̃ = ỹ.
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Completion

Definition

If t → t1 and t → t2, (t1, t2) is a critical pair.

Newman’s Lemma

Assume → is Noetherian. Left-hand sides of rewrite rules generate a
finite set of critical pairs.
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Knuth-Bendix Completion 1/4

Algorithm

Resolving critical pair (t1, t2):

t1 → t̃1, t2 → t̃2.

If t̃1 = t̃2: critical pair is trivial.

If t̃1 > t̃2: add (t̃1 → t̃2) to R.

If t̃1 < t̃2: add (t̃2 → t̃1) to R.
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Knuth-Bendix Completion 2/4

u · v · w
v

Overlap of the first kind

If (u · v · w → x), (v → y) ∈ R,

Delete (u · v · w → x).

Resolve (u · y · w, x).
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Knuth-Bendix Completion 3/4

u · v
v · w

Overlap of the second kind

If (u · v → x), (v · w → y) ∈ R,

Resolve (x · w, u · y).
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Knuth-Bendix Completion 4/4

Reduction

For all (u → v) ∈ R where v ̸= ṽ,

Replace (u → v) with (u → ṽ).
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Knuth-Bendix completion might not terminate!

Question

What just defined the basic lowering. Does the basic lowering accept
all generic signatures?
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Finite Cross-Section

G has a finite cross-section if set of equivalence classes is finite.

finite theory ⊊ finite cross-section

protocol Z2 {

associatedtype A where Self.A: Z2, Self.A.A == Self

}

GZ2 has an infinite theory: τ0, τ0.A, τ0.A.A, τ0.A.A.A, . . .

GZ2 has a finite cross-section:

Representative: General form:

τ0 τ0.A
2n

τ0.A τ0.A
2n+1
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The Basic Lowering

Theorem

⟨A; R⟩ is basic lowering of G. Completion terminates if and only if :

G has a finite cross-section.

For each protocol P used by G, GP has a finite cross-section.
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Infinite Example

GCollection does not have a finite cross-section. Let’s remove
everything but the recursive “slice” type:

protocol N {

associatedtype A: N

}

Rewrite rules:

([N] · A · [N] → [N] · A)
(τ0 · [N] → τ0)
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Overlapping Rules

τ0 · [N]
[N] · A · [N]

τ0 · [N] · A · [N] → τ0 · A · [N]
τ0 · [N] · A · [N] → τ0 · [N] · A → τ0 · A

(τ0 · A · [N] → τ0 · A)
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Full Lowering

[P] · A → [P]A
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Associated Type Symbols

Definition

For each associated type A of each protocol [P],

A := A ∪ {[P]A}
R := R ∪ {([P] · A → [P]A)}

Reduction order: [P] < [P]A < A < τi

Theorem

Adding a new symbol a and rewrite rule (t → a) does not change the
term equivalence relation ∼.
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Infinite Example, Revisited

protocol N {

associatedtype A: N

}

Rewrite rules:

([N] · A → [N]A)—new!

([N] · A · [N] → [N] · A)
(τ0 · [N] → τ0)
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New Overlapping Rules

[N] · A · [N]
[N] · A

[N] · A · [N] → [N]A · [N]
[N] · A · [N] → [N] · A → [N]A

([N]A · [N] → [N]A)
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Success

We have a convergent rewrite system!

Conformance rules:

([N]A · [N] → [N]A)

(τ0 · [N] → τ0)

Name reduction rules:

([N] · A → [N]A)

([N]A · A → [N]A · [N]A)
(τ0 · A → τ0 · [N]A)
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Normal Form Example

GN ⊨ [τ0.A.A.A: N]. Therefore, τ0 · A · A · A · [N] ∼ τ0 · A · A · A:

τ0 · A · A · A → τ0 · [N]A · A · A
→ τ0 · [N]A · [N]A · A
→ τ0 · [N]A · [N]A · [N]A

Other side:

τ0 · A · A · A · [N] → τ0 · [N]A · [N]A · [N]A · [N]
→ τ0 · [N]A · [N]A · [N]A
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Full Lowering

Full lowering accepts:

All generic signatures with finite cross-section.

Some generic signatures with infinite cross-section: GN,
GCollection, many more.

Question

Does the full lowering accept all generic signatures?
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string rewrite system
⇓

generic signature
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Encoding a Rewrite System

Example:
M := ⟨a, b, c; ab ∼ a, bc ∼ b⟩

protocol M {

}
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Encoding a Rewrite System

Example:
M := ⟨a, b, c; ab ∼ a, bc ∼ b⟩

protocol M {

associatedtype A: M

associatedtype B: M

associatedtype C: M

where A.B == A, B.C == B

}
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Solving Word Problems

We have ac ∼ a but ca ̸∼ b:

func wordProblems<T: M>(_: T.Type) {

sameType(T.A.C.self, T.A.self) // okay

sameType(T.C.A.self, T.B.self) // type error

}

func sameType<T>(_: T.Type, _: T.Type) {}
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Understanding the Encoding

GM encodes the word problem in ⟨A; R⟩:
t ∈ A∗ if and only if GM ⊨ T.

u ∼ v if and only if GM ⊨ [U == V].

⟨A; R⟩
⇓
GM

⇓
⟨A′, R′⟩
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Undecidability

Historical sketch:

Thue (1914): word problem

Gödel (1931): incompleteness

Turing (1936): effective computability

Post (1945): word problem is undecidable

Theorem

(Tseitin, 1956) Undecidable if a given term t is equivalent to aaa:

⟨a, b, c, d, e; ac ∼ ca, ad ∼ da, bc ∼ cb, bd ∼ db, eca ∼ ce,

cdca ∼ cdcae, caaa ∼ aaa, daaa ∼ aaa⟩
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Undecidable Example

// error: cannot build rewrite system for protocol;

// rule length limit exceeded

protocol M {

associatedtype A: M

associatedtype B: M

associatedtype C: M

associatedtype D: M

associatedtype E: M

where A.C == C.A, A.D == D.A,

B.C == C.B, B.D == D.B,

E.C.A == C.E, C.D.C.A == C.D.C.A.E,

C.A.A.A == A.A.A, D.A.A.A == A.A.A

}

Undecidable problem

Instance: Type parameter T.

Question: Is GM ⊨ [T == τ0.A.A.A]?
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Conclusion

Formal theory of associated requirements.

Generic signature ⇒ string rewrite system.

Derived requirements ⇒ word problem.

Knuth-Bendix solves word problem if successful.

finite theory ⊊ finite cross-section ⊊ all generic signatures

Accept all finite cross-section, and some infinite cross-section.

No decision procedure can accept all generic signatures.
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Ten Years of Swift Generics

Separately-compiled generics (2013)

Standard library collections (2015)

Recursive conformances (2017)

Undecidability (2020)

Requirement Machine (2022)

Formal model (2023)

Slava Pestov (Apple) Protocols and Associated Types 2023 91 / 109



Additional Resources

Reference guide, Compiling Swift Generics:
download.swift.org/docs/assets/generics.pdf

Recorded talk, Implementing Swift Generics:
www.youtube.com/watch?v=ctS8FzqcRug
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Thank You!
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Backup Slides
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Calling Convention Supplement

func identity<T>(x: T) -> T {

return x

}

Calling convention of identity():

Pointer to type metadata for T

Pointer to argument of type T

Pointer to return buffer for value of type T
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Calling Convention Supplement

Type metadata:

size

alignment

destroy value when it leaves scope

copy value if use extends lifetime

move value if this is final use

Implementations:

Trivial types (Int, etc): bitwise copy

Reference types: copy +1, destroy -1

Generic structs and enums (Either<U, V>, etc):

Instantiation function
Compute size and alignment from U and V

Generic move, copy, destroy operations
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Calling Convention Supplement

func firstTwo<S>(_ s: inout S) -> Pair<S.Element>

where S: Stream

Calling convention of firstTwo():

Pointer to type metadata for S

Pointer to witness table for [S: Stream]

Witness table layout of [S: Stream]:

Type metadata for Element

Concrete implementation of next()

Slava Pestov (Apple) Protocols and Associated Types 2023 97 / 109



Decision Problems Supplement

Problem 3: Name lookup

Instance: Generic signature G, type parameter T.

Question: All protocols P such that G ⊨ [T: P]?

Type checking “foo.bar” where foo is a T:

Some P where G ⊨ [T: P] must declare a member named bar.

Reduces to Problem 1.
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Decision Problems Supplement

Problem 4: Type parameter validity

Instance: Generic signature G, type parameter T.

Question: Is G ⊨ T?

Reduces to Problem 3:

τi validity: immediate.

U.A: valid iff exists P declaring A such that G ⊨ [U: P].
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Decision Problems Supplement

Problem 5: Generic signature validity

Instance: Generic signature G.

Question: Is G valid?

Generic signature of binarySearch():

G := τ0, τ1, [τ0: Collection], [τ1: Comparable], [τ1 == τ0.Element]

Now, G ⊨ [τ1 == τ0.Element] but G ⊭ τ0.Element!
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Valid Generic Signatures Suppment

Valid generic requirements

[T: P] is valid if G ⊨ T.

[T == U] is valid if G ⊨ T and G ⊨ U.

Valid associated requirements

[Self.U: Q]P is valid if GP ⊨ τ0.U.

[Self.U == Self.V]P is valid if GP ⊨ τ0.U and GP ⊨ τ0.V.

Theorem

Assume all explicitly-written requirements of G are valid. Then all
derived requirements of G are valid.
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Validity Proof Supplement

Base case ⊢ Ei: Ei is known valid.

Inductive step D1, . . . , Dn ⊢ D: show D is valid if all Di are.

Slava Pestov (Apple) Protocols and Associated Types 2023 102 / 109



Validity Proof Supplement

Interesting cases:

[T: P] ⊢ [T.U: Q] (AssocConf)

[T: P] ⊢ [T.U == T.V] (AssocSame)

We know G ⊨ T, must show G ⊨ T.U (or G ⊨ T.V)

Formal substitution on GP ⊨ τ0.U:

⊢ τ0 becomes G ⊨ T

⊢ [τ0: P] becomes G ⊨ [T: P]

In all other steps, replace τ0 with T

We get G ⊨ T.U!
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Term Equivalence Proof Supplement

[U: P], [T == U] ⊢ [T: P] (Equiv)

Assume φ(U) · [P] ∼ φ(U) and φ(T) ∼ φ(U). Then,

φ(T) · [P] ∼ φ(U) · [P] ∼ φ(U) ∼ φ(T)

[T: P], [T == U] ⊢ [T.A == U.A] (Member)

φ(T) ∼ φ(U) implies φ(T) · A ∼ φ(U) · A.
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Finiteness Proof Supplement

Set of irreducible type terms I(G) ⊂ A∗:

{for all G ⊨ T : φ̃(T)}⋃
{for all GP ⊨ τ0.U : φ̃P(Self.U)}

φ̃(T): normal form of φ(T)

φ̃P(Self.U): normal form of φP(Self.U)

If ⟨A; R⟩ is convergent (possibly infinite):

⟨A; R⟩ finite ⇔ I(G) finite
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Finiteness Proof Supplement

No element of I(G) is a proper suffix of any other:

τi · Ai1 · · · Aim [Q] · Ajn · · · Ajn
If t ∈ I(G) and t · [P] ∼ t, then (t · [P] ∼ t) ∈ R.

If (t · [P] ∼ t) ∈ R, then t ∈ I(G).
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Valid Type Parameters Supplement

If G ⊨ U.A, G ⊨ [U: P] for some P declaring A. Therefore,

φ(U.A) = φ(U) · A
∼ φ(U) · [P] · A
∼ φ(U) · [P]A

Name symbols reduce to associated type symbols: [P]A < A.

Problem 4: Type parameter validity

Assume G is valid. Then G ⊨ T if and only if φ̃(T) does not contain
name symbols.
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Full Lowering Supplement

Now, φ̃P(Self.U) might be a proper suffix of φ̃(T):

φ̃(T) = τi · [P1]A1 · · · [Pn]An

φ̃P(Self.U) =

{
[P]

[P]A1 · · · [Pn]An

Problem 3: Name lookup

If t irreducible, then t · [P] ∼ t if and only if t = u · v for some
(v · [P] → v) ∈ R, and u ∈ A∗. We build the property map:

Record all (v · [P] → v) in a multi-map with key v.

Keys stored in suffix trie.

Given T, check every suffix of φ̃(T).
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Full Lowering Supplement

Theorem

Given a string rewrite system ⟨A; R⟩, the full lowering outputs a
convergent rewrite system for GM if and only if ⟨A; R⟩ can be
extended to a convergent rewrite system over A compatible with
shortlex order on A∗.

Completion can fail:

Bad choice of alphabet

Reduction order

Some rewrite systems have no convergent presentation over any
alphabet.
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